This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236757 #25 Feb 18 2014 13:30:37 %S A236757 1,1,1,1,1,3,1,3,1,6,9,3,1,1,6,29,35,14,1,10,75,209,174,1,10,147,765, %T A236757 1234,1,15,270,2340,7639,6169,1893,242,17,1,1,15,438,5806,34342,79821, %U A236757 80722,36569,7106,459 %N A236757 Number T(n,k) of equivalence classes of ways of placing k 4 X 4 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=4, 0<=k<=floor(n/4)^2, read by rows. %C A236757 The first 10 rows of T(n,k) are: %C A236757 .\ k 0 1 2 3 4 5 6 7 8 9 %C A236757 n %C A236757 4 1 1 %C A236757 5 1 1 %C A236757 6 1 3 %C A236757 7 1 3 %C A236757 8 1 6 9 3 1 %C A236757 9 1 6 29 35 14 %C A236757 10 1 10 75 209 174 %C A236757 11 1 10 147 765 1234 %C A236757 12 1 15 270 2340 7639 6169 1893 242 17 1 %C A236757 13 1 15 438 5806 34342 79821 80722 36569 7106 459 %H A236757 Christopher Hunt Gribble, <a href="/A236757/a236757.cpp.txt">C++ program</a> %F A236757 It appears that: %F A236757 T(n,0) = 1, n>= 4 %F A236757 T(n,1) = (floor((n-4)/2)+1)*(floor((n-4)/2+2))/2, n >= 4 %F A236757 T(c+2*4,2) = A131474(c+1)*(4-1) + A000217(c+1)*floor(4^2/4) + A014409(c+2), 0 <= c < 4, c even %F A236757 T(c+2*4,2) = A131474(c+1)*(4-1) + A000217(c+1)*floor((4-1)(4-3)/4) + A014409(c+2), 0 <= c < 4, c odd %F A236757 T(c+2*4,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((4-c-1)/2) + A131941(c+1)*floor((4-c)/2)) + S(c+1,3c+2,3), 0 <= c < 4 where %F A236757 S(c+1,3c+2,3) = %F A236757 A054252(2,3), c = 0 %F A236757 A236679(5,3), c = 1 %F A236757 A236560(8,3), c = 2 %F A236757 A236757(11,3), c = 3 %e A236757 T(8,3) = 3 because the number of equivalence classes of ways of placing 3 4 X 4 square tiles in an 8 X 8 square under all symmetry operations of the square is 3. The portrayal of an example from each equivalence class is: %e A236757 ._____________ _____________ _____________ %e A236757 | | | | |______| | | | %e A236757 | . | . | | . | | | . |______| %e A236757 | | | | | . | | | | %e A236757 |______|______| |______| | |______| . | %e A236757 | | | | |______| | | | %e A236757 | . | | | . | | | . |______| %e A236757 | | | | | | | | | %e A236757 |______|______| |______|______| |______|______| %Y A236757 Cf. A054252, A236679, A236560, A236800, A236829, A236865, A236915, A236936, A236939. %K A236757 nonn,tabf %O A236757 4,6 %A A236757 _Christopher Hunt Gribble_, Jan 30 2014