cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236758 Number of partitions of 3*n into 3 parts with smallest part prime.

This page as a plain text file.
%I A236758 #30 Nov 06 2024 04:11:17
%S A236758 0,1,3,6,10,14,20,25,32,37,45,51,61,68,79,86,98,106,120,129,144,153,
%T A236758 169,179,196,206,223,233,251,262,282,294,315,327,348,360,382,395,418,
%U A236758 431,455,469,495,510,537,552,580,596,625,641,670,686,716,733,764,781
%N A236758 Number of partitions of 3*n into 3 parts with smallest part prime.
%H A236758 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A236758 a(n) = Sum_{i=1..n} A010051(i) * (2*n - 2*i + 1 - floor((n - i + 1)/2)).
%e A236758 Count the primes in last column for a(n):
%e A236758                                                13 + 1 + 1
%e A236758                                                12 + 2 + 1
%e A236758                                                11 + 3 + 1
%e A236758                                                10 + 4 + 1
%e A236758                                                 9 + 5 + 1
%e A236758                                                 8 + 6 + 1
%e A236758                                                 7 + 7 + 1
%e A236758                                    10 + 1 + 1  11 + 2 + 2
%e A236758                                     9 + 2 + 1  10 + 3 + 2
%e A236758                                     8 + 3 + 1   9 + 4 + 2
%e A236758                                     7 + 4 + 1   8 + 5 + 2
%e A236758                                     6 + 5 + 1   7 + 6 + 2
%e A236758                         7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
%e A236758                         6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
%e A236758                         5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
%e A236758                         4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
%e A236758             4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
%e A236758             3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
%e A236758 1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
%e A236758    3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
%e A236758 ---------------------------------------------------------------------
%e A236758     0           1           3           6           10      ..   a(n)
%p A236758 with(numtheory); A236758:=n->sum((pi(n) - pi(n-1)) * (2*n - 2*i + 1 - floor((n - i + 1)/2)), i=1..n); seq(A236758(n), n=1..100);
%t A236758 Table[Sum[(PrimePi[i] - PrimePi[i - 1]) (2 n - 2 i + 1 - Floor[(n - i + 1)/2]), {i, n}], {n, 100}]
%o A236758 (Sage) def a(n): return sum(1 for L in Partitions(3*n,length=3).list() if is_prime(L[2]))
%Y A236758 Cf. A019298, A235988, A236364, A236762, A010051 (for function isprime).
%K A236758 nonn,easy
%O A236758 1,3
%A A236758 _Wesley Ivan Hurt_, Jan 30 2014