This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236760 #17 Sep 08 2022 08:46:06 %S A236760 2,6,9,12,26,44,72,77,119,204,266,290,351,506,539,542,561,644,741,807, %T A236760 861,924,992,996,1016,1032,1049,1356,1412,1556,1640,1794,1847,1862, %U A236760 1871,1895,1980,2036,2129,2222,2289,2354,2445,2616,2630 %N A236760 Numbers n such that n^4 + n +- 1 are twin primes. %H A236760 Harvey P. Dale, <a href="/A236760/b236760.txt">Table of n, a(n) for n = 1..1000</a> %e A236760 992^4 + 992 + 1 (968381957089) and 992^4 + 992 - 1 (968381957087) are twin primes. Thus, 992 is a member of this sequence. %t A236760 Select[Range[3000], PrimeQ[#^4 + # - 1] && PrimeQ[#^4 + # + 1] &] (* _Vincenzo Librandi_, Dec 26 2015 *) %t A236760 Select[Range[3000],AllTrue[#^4+#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Oct 13 2017 *) %o A236760 (Python) %o A236760 import sympy %o A236760 from sympy import isprime %o A236760 {print(n) for n in range(10**4) if isprime(n**4+n-1) and isprime(n**4+n+1)} %o A236760 (PARI) %o A236760 s=[]; for(n=1, 3000, if(isprime(n^4+n+1)&&isprime(n^4+n-+1), s=concat(s, n))); s \\ _Colin Barker_, Jan 31 2014 %o A236760 (Magma) [n: n in [1..5*10^3] |IsPrime(n^4+n-1) and IsPrime(n^4 +n+1)]; // _Vincenzo Librandi_, Dec 26 2015 %Y A236760 Intersection of A236759 and A049408. %K A236760 nonn,easy %O A236760 1,1 %A A236760 _Derek Orr_, Jan 30 2014