This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236763 #9 Dec 27 2014 11:56:35 %S A236763 6,9,13,16,39,60,79,174,183,198,295,361,393,481,540,669,705,715,765, %T A236763 781,889,975,1078,1149,1218,1260,1288,1294,1351,1363,1503,1600,1611, %U A236763 1701,1713,1911,2041,2254,2298,2484,2553,2625,2899,2946,2959 %N A236763 Numbers n such that n^4 - n +/- 1 are twin primes. %H A236763 Harvey P. Dale, <a href="/A236763/b236763.txt">Table of n, a(n) for n = 1..1000</a> %e A236763 975^4-975+1 (903687889651) and 975^4-975-1 (903687889649) are twin primes. Thus, 975 is a member of this sequence. %t A236763 Select[Range[3000],AllTrue[#^4-#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Dec 27 2014 *) %o A236763 (Python) %o A236763 import sympy %o A236763 from sympy import isprime %o A236763 {print(n) for n in range(10**4) if isprime(n**4-n+1) and isprime(n**4-n-1)} %o A236763 (PARI) %o A236763 s=[]; for(n=1, 3000, if(isprime(n^4-n+1)&&isprime(n^4-n-+1), s=concat(s, n))); s \\ _Colin Barker_, Jan 31 2014 %Y A236763 Intersection of A236761 and A126424. %K A236763 nonn %O A236763 1,1 %A A236763 _Derek Orr_, Jan 30 2014