This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236764 #12 Mar 08 2020 11:35:04 %S A236764 15,21,15375,25164,53361,95190,110685,115140,133701,139425,140430, %T A236764 140844,189336,217686,220650,266916,272469,289341,344880,364665, %U A236764 377805,382221,390270,415779,454905,539700,561186,567645,575799,584430,603651,722484 %N A236764 Numbers k such that k^3 +/- k +/- 1 are prime for all four possibilities. %H A236764 Daniel Starodubtsev, <a href="/A236764/b236764.txt">Table of n, a(n) for n = 1..10000</a> %e A236764 110685^3+110685+1 (1356020665779811), 110685^3+110685-1 (1356020665779809), 110685^3-110685+1 (1356020665558441) and 110685^3-110685-1 (1356020665558439) are all prime. Thus 110685 is a member of this sequence. %o A236764 (Python) %o A236764 import sympy %o A236764 from sympy import isprime %o A236764 {print(n) for n in range(10**6) if isprime(n**3+n+1) and isprime(n**3-n+1) and isprime(n**3+n-1) and isprime(n**3-n-1)} %o A236764 (PARI) for(n=1, 800000, if(isprime(n^3+n+1)&&isprime(n^3-n+1)&&isprime(n^3+n-1)&&isprime(n^3-n-1), print1(n, ","))) \\ _Colin Barker_, Jan 31 2014 %Y A236764 Intersection of A126421, A236477, A049407, and A236475. %K A236764 nonn %O A236764 1,1 %A A236764 _Derek Orr_, Jan 30 2014