cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236765 Number of ways to write n = k^2 + m with k > 1 and m > 1 such that sigma(k^2) + prime(m) - 1 is prime, where sigma(j) denotes the sum of all positive divisors of j.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 0, 2, 3, 1, 3, 2, 1, 2, 2, 3, 2, 4, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 4, 4, 3, 4, 4, 1, 3, 4, 2, 2, 5, 3, 3, 4, 4, 3, 1, 5, 3, 4, 3, 4, 5, 4, 3, 1, 5, 2, 6, 4, 3, 4, 2, 1, 5, 4, 7, 4, 4, 3, 1, 3, 1, 4, 4, 4, 2, 5, 6, 3, 6, 5, 5, 1, 4, 5, 5, 4, 3, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 30 2014

Keywords

Comments

Conjecture: (i) If n > 6 is not equal to 18, then a(n) > 0.
(ii) Any integer n > 14 can be written as p + q with q > 0 such that p, p + 6 and prime(p) + sigma(q) are all prime.

Crossrefs

Programs

  • Maple
    a(10) = 1 since 10 = 2^2 + 6 with sigma(2^2) + prime(6) - 1 = 7 + 13 - 1 = 19 prime.
    a(253) = 1 since 253 = 15^2 + 28 with sigma(15^2) + prime(28) - 1 = 403 + 107 - 1 = 509 prime.
  • Mathematica
    p[n_,k_]:=PrimeQ[DivisorSigma[1,k^2]+Prime[n-k^2]-1]
    a[n_]:=If[n<6,0,Sum[If[p[n,k],1,0],{k,2,Sqrt[n-2]}]]
    Table[a[n],{n,1,100}]