This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236766 #9 Nov 02 2024 11:04:08
%S A236766 6,9,7266,115131,380529,536646,636609,818526,922734,1389015,1660119,
%T A236766 2045415,2085726,2262420,2469396,2722260,2836374,2954250,3146904,
%U A236766 3614226,3949770,4062465,4110834,4211499,4400100,5081055,5324424,5434794,5436090
%N A236766 Numbers n such that n^4 +/- n +/- 1 are prime for all four possibilities.
%e A236766 380529^4+380529+1 (20967711831335262645811), 380529^4+380529-1 (20967711831335262645809), 380529^4-380529+1 (20967711831335261884753), and 380529^4-380529-1 (20967711831335261884751) are all prime. Thus, 380529 is a member of this sequence.
%t A236766 Select[Range[55*10^5],AllTrue[#^4+{(#-1),(#+1),(-#-1),(-#+1)},PrimeQ]&] (* _Harvey P. Dale_, Nov 02 2024 *)
%o A236766 (Python)
%o A236766 import sympy
%o A236766 from sympy import isprime
%o A236766 {print(n) for n in range(10**7) if isprime(n**4+n+1) and isprime(n**4-n+1) and isprime(n**4+n-1) and isprime(n**4-n-1)}
%o A236766 (PARI)
%o A236766 for(n=1, 5000000, if(isprime(n^4+n+1)&&isprime(n^4-n+1)&&isprime(n^4+n-1)&&isprime(n^4-n-1), print1(n, ","))) \\ _Colin Barker_, Jan 31 2014
%Y A236766 Intersection of A236759, A049408, A236761 and A126424.
%K A236766 nonn
%O A236766 1,1
%A A236766 _Derek Orr_, Jan 30 2014