This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236800 #21 Feb 18 2014 13:30:41 %S A236800 1,1,1,1,1,3,1,3,1,6,1,6,12,3,1,1,10,40,44,14,1,10,97,245,174,1,15, %T A236800 193,925,1234,1,15,339,2640,6124,1,21,555,6617,27074,19336,4785,461, %U A236800 23,1 %N A236800 Number T(n,k) of equivalence classes of ways of placing k 5 X 5 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=5, 0<=k<=floor(n/5)^2, read by rows. %C A236800 The first 11 rows of T(n,k) are: %C A236800 .\ k 0 1 2 3 4 5 6 7 8 9 %C A236800 n %C A236800 5 1 1 %C A236800 6 1 1 %C A236800 7 1 3 %C A236800 8 1 3 %C A236800 9 1 6 %C A236800 10 1 6 12 3 1 %C A236800 11 1 10 40 44 14 %C A236800 12 1 10 97 245 174 %C A236800 13 1 15 193 925 1234 %C A236800 14 1 15 339 2640 6124 %C A236800 15 1 21 555 6617 27074 19336 4785 461 23 1 %H A236800 Christopher Hunt Gribble, <a href="/A236800/a236800.cpp.txt">C++ program</a> %F A236800 It appears that: %F A236800 T(n,0) = 1, n>= 5 %F A236800 T(n,1) = (floor((n-5)/2)+1)*(floor((n-5)/2+2))/2, n >= 5 %F A236800 T(c+2*5,2) = A131474(c+1)*(5-1) + A000217(c+1)*floor(5^2/4) + A014409(c+2), 0 <= c < 5, c even %F A236800 T(c+2*5,2) = A131474(c+1)*(5-1) + A000217(c+1)*floor((5-1)(5-3)/4) + A014409(c+2), 0 <= c < 5, c odd %F A236800 T(c+2*5,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((5-c-1)/2) + A131941(c+1)*floor((5-c)/2)) + S(c+1,3c+2,3), 0 <= c < 5 where %F A236800 S(c+1,3c+2,3) = %F A236800 A054252(2,3), c = 0 %F A236800 A236679(5,3), c = 1 %F A236800 A236560(8,3), c = 2 %F A236800 A236757(11,3), c = 3 %F A236800 A236800(14,3), c = 4 %e A236800 T(10,3) = 3 because the number of equivalence classes of ways of placing 3 5 X 5 square tiles in an 10 X 10 square under all symmetry operations of the square is 3. The portrayal of an example from each equivalence class is: %e A236800 ._______________ _______________ _______________ %e A236800 | | | | |_______| | | | %e A236800 | | | | | | | |_______| %e A236800 | . | . | | . | | | . | | %e A236800 | | | | | . | | | | %e A236800 |_______|_______| |_______| | |_______| . | %e A236800 | | | | |_______| | | | %e A236800 | | | | | | | |_______| %e A236800 | . | | | . | | | . | | %e A236800 | | | | | | | | | %e A236800 |_______|_______| |_______|_______| |_______|_______| %Y A236800 Cf. A054252, A236679, A236560, A236757, A236829, A236865, A236915, A236936, A236939. %K A236800 tabf,nonn %O A236800 5,6 %A A236800 _Christopher Hunt Gribble_, Jan 31 2014