This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236829 #21 Feb 19 2014 04:36:30 %S A236829 1,1,1,1,1,3,1,3,1,6,1,6,1,10,16,4,1,1,10,51,50,14,1,15,125,293,174,1, %T A236829 15,239,1065,1234,1,21,423,3075,6124,1,21,672,7371,23259,1,28,1030, %U A236829 16093,81480,51615,10596,808,31,1 %N A236829 Number T(n,k) of equivalence classes of ways of placing k 6 X 6 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=6, 0<=k<=floor(n/6)^2, read by rows. %C A236829 The first 13 rows of T(n,k) are: %C A236829 .\ k 0 1 2 3 4 5 6 7 8 9 %C A236829 n %C A236829 6 1 1 %C A236829 7 1 1 %C A236829 8 1 3 %C A236829 9 1 3 %C A236829 10 1 6 %C A236829 11 1 6 %C A236829 12 1 10 16 4 1 %C A236829 13 1 10 51 50 14 %C A236829 14 1 15 125 293 174 %C A236829 15 1 15 239 1065 1234 %C A236829 16 1 21 423 3075 6124 %C A236829 17 1 21 672 7371 23259 %C A236829 18 1 28 1030 16093 81480 51615 10596 808 31 1 %H A236829 Christopher Hunt Gribble, <a href="/A236829/a236829.cpp.txt">C++ program</a> %F A236829 It appears that: %F A236829 T(n,0) = 1, n>= 6 %F A236829 T(n,1) = (floor((n-6)/2)+1)*(floor((n-6)/2+2))/2, n >= 6 %F A236829 T(c+2*6,2) = A131474(c+1)*(6-1) + A000217(c+1)*floor(6^2/4) + A014409(c+2), 0 <= c < 6, c even %F A236829 T(c+2*6,2) = A131474(c+1)*(6-1) + A000217(c+1)*floor((6-1)(6-3)/4) + A014409(c+2), 0 <= c < 6, c odd %F A236829 T(c+2*6,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((6-c-1)/2) + A131941(c+1)*floor((6-c)/2)) + S(c+1,3c+2,3), 0 <= c < 6 where %F A236829 S(c+1,3c+2,3) = %F A236829 A054252(2,3), c = 0 %F A236829 A236679(5,3), c = 1 %F A236829 A236560(8,3), c = 2 %F A236829 A236757(11,3), c = 3 %F A236829 A236800(14,3), c = 4 %F A236829 A236829(17,3), c = 5 %e A236829 T(12,3) = 4 because the number of equivalence classes of ways of placing 3 6 X 6 square tiles in a 12 X 12 square under all symmetry operations of the square is 4. The portrayal of an example from each equivalence class is: %e A236829 ._________________ _________________ %e A236829 | | | | |________| %e A236829 | | | | | | %e A236829 | . | . | | . | | %e A236829 | | | | | . | %e A236829 | | | | | | %e A236829 |________|________| |________| | %e A236829 | | | | |________| %e A236829 | | | | | | %e A236829 | . | | | . | | %e A236829 | | | | | | %e A236829 | | | | | | %e A236829 |________|________| |________|________| %e A236829 . %e A236829 ._________________ _________________ %e A236829 | | | | | | %e A236829 | |________| | | | %e A236829 | . | | | . |________| %e A236829 | | | | | | %e A236829 | | . | | | | %e A236829 |________| | |________| . | %e A236829 | | | | | | %e A236829 | |________| | | | %e A236829 | . | | | . |________| %e A236829 | | | | | | %e A236829 | | | | | | %e A236829 |________|________| |________|________| %Y A236829 Cf. A054252, A236679, A236560, A236757, A236800, A236865, A236915, A236936, A236939. %K A236829 tabf,nonn %O A236829 6,6 %A A236829 _Christopher Hunt Gribble_, Jan 31 2014