cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236833 a(n) = number of times n occurs in A234741.

This page as a plain text file.
%I A236833 #12 Apr 13 2014 14:08:10
%S A236833 1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,4,1,1,2,1,1,2,1,0,1,2,1,2,2,1,1,1,
%T A236833 4,1,1,1,1,3,2,1,1,1,1,2,2,1,1,1,0,4,1,2,2,0,1,3,2,1,2,1,1,1,1,2,1,1,
%U A236833 4,1,1,2,1,1,1,4,1,1,3,1,2,1,1,3,1,6,1,0
%N A236833 a(n) = number of times n occurs in A234741.
%C A236833 Number of distinct values k such that A234741(k) = n.
%H A236833 Antti Karttunen, <a href="/A236833/b236833.txt">Table of n, a(n) for n = 0..8192</a>
%F A236833 a(2n) = a(n).
%F A236833 This should also have a direct formula, mirroring the formula for A236853. Cf. also A236861.
%o A236833 (Scheme, counting cases empirically with a naive loop. A234742 gives an absolute upper bound for any inverse of A234741):
%o A236833 (define (A236833 n) (let ((u (A234742 n))) (let loop ((k n) (ntimes 0)) (cond ((> k u) ntimes) ((= (A234741 k) n) (loop (+ k 1) (+ ntimes 1))) (else (loop (+ k 1) ntimes))))))
%Y A236833 A236834 gives the positions of zeros, A236835 the positions of terms larger than one, A236841 the positions of terms other than zero.
%Y A236833 Cf. A234741, A236853, A236861.
%K A236833 nonn
%O A236833 0,6
%A A236833 _Antti Karttunen_, Jan 31 2014