This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236837 #11 Feb 07 2014 10:45:09 %S A236837 0,1,2,3,4,9,6,7,8,21,18,11,12,13,14,27,16,81,42,19,36,49,22,39,24,0, %T A236837 26,63,28,33,54,31,32,93,162,91,84,37,38,99,72,41,98,43,44,189,78,47, %U A236837 48,77,0,243,52,57,126,0,56,117,66,59,108,61,62,147,64,441,186,67,324,121 %N A236837 The greatest inverse of A234741: a(n) = the largest k such that A234741(k) = n, and 0 if no such k exists. %C A236837 A234741(a(n)) = n, unless n is in A236834, in which case a(n)=0. %C A236837 For all n, a(n) <= A234742(n). A236850 gives such k that a(k) = A234742(k). %C A236837 If n is in A236835, a(n) > A236836(n), otherwise a(n) = A236836(n). %C A236837 a(2^n) = 2^n. %C A236837 a(2n) = 2*a(n). %H A236837 Antti Karttunen, <a href="/A236837/b236837.txt">Table of n, a(n) for n = 0..8192</a> %o A236837 (Scheme, finding the greatest inverse empirically with a naive loop. A234742 gives an absolute upper bound for any inverse of A234741): %o A236837 (define (A236837 n) (let ((u (A234742 n))) (let loop ((i u)) (let ((k (A234741 i))) (cond ((< i n) 0) ((= k n) i) (else (loop (- i 1)))))))) %Y A236837 A236834 gives the positions of zeros. %Y A236837 Differs from A235042 and A234742 for the first time at n=25, where a(25)=0 but A235042(25)=5 and A234742(25)=25. %Y A236837 Cf. A236836 (the least inverse of A234741). %Y A236837 Cf. also A236833, A236835, A234741, A236841, A236850. %K A236837 nonn %O A236837 0,3 %A A236837 _Antti Karttunen_, Jan 31 2014