cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236865 Number T(n,k) of equivalence classes of ways of placing k 7 X 7 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=7, 0<=k<=floor(n/7)^2, read by rows.

This page as a plain text file.
%I A236865 #15 Feb 17 2014 13:00:31
%S A236865 1,1,1,1,1,3,1,3,1,6,1,6,1,10,1,10,20,4,1,1,15,65,59,14,1,15,153,329,
%T A236865 174,1,21,295,1225,1234,1,21,507,3465,6124,1,28,810,8358,23259,1,28,
%U A236865 1214,17710,73204
%N A236865 Number T(n,k) of equivalence classes of ways of placing k 7 X 7 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=7, 0<=k<=floor(n/7)^2, read by rows.
%C A236865 The first 13 rows of T(n,k) are:
%C A236865 .\ k  0     1     2     3     4     5     6     7     8     9
%C A236865 n
%C A236865 7     1     1
%C A236865 8     1     1
%C A236865 9     1     3
%C A236865 10    1     3
%C A236865 11    1     6
%C A236865 12    1     6
%C A236865 13    1    10
%C A236865 14    1    10    20     4     1
%C A236865 15    1    15    65    59    14
%C A236865 16    1    15   153   329   174
%C A236865 17    1    21   295  1225  1234
%C A236865 18    1    21   507  3465  6124
%C A236865 19    1    28   810  8358 23259
%C A236865 20    1    28  1214 17710 73204
%H A236865 Christopher Hunt Gribble, <a href="/A236865/a236865.cpp.txt">C++ program</a>
%F A236865 It appears that:
%F A236865 T(n,0) = 1, n>= 7
%F A236865 T(n,1) = (floor((n-7)/2)+1)*(floor((n-7)/2+2))/2, n >= 7
%F A236865 T(c+2*7,2) = A131474(c+1)*(7-1) + A000217(c+1)*floor(7^2/4) + A014409(c+2), 0 <= c < 7, c even
%F A236865 T(c+2*7,2) = A131474(c+1)*(7-1) + A000217(c+1)*floor((7-1)(7-3)/4) + A014409(c+2), 0 <= c < 7, c odd
%F A236865 T(c+2*7,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((7-c-1)/2) + A131941(c+1)*floor((7-c)/2)) + S(c+1,3c+2,3), 0 <= c < 7 where
%F A236865 S(c+1,3c+2,3) =
%F A236865 A054252(2,3),  c = 0
%F A236865 A236679(5,3),  c = 1
%F A236865 A236560(8,3),  c = 2
%F A236865 A236757(11,3), c = 3
%F A236865 A236800(14,3), c = 4
%F A236865 A236829(17,3), c = 5
%F A236865 A236865(20,3), c = 6
%e A236865 T(14,3) = 4 because the number of equivalent classes of ways of placing 3 7 X 7 square tiles in an 14 X 14 square under all symmetry operations of the square is 4. The portrayal of an example from each equivalence class is:
%e A236865 .___________________          ___________________
%e A236865 |         |         |        |         |_________|
%e A236865 |         |         |        |         |         |
%e A236865 |         |         |        |         |         |
%e A236865 |    .    |    .    |        |    .    |         |
%e A236865 |         |         |        |         |    .    |
%e A236865 |         |         |        |         |         |
%e A236865 |_________|_________|        |_________|         |
%e A236865 |         |         |        |         |_________|
%e A236865 |         |         |        |         |         |
%e A236865 |         |         |        |         |         |
%e A236865 |    .    |         |        |    .    |         |
%e A236865 |         |         |        |         |         |
%e A236865 |         |         |        |         |         |
%e A236865 |_________|_________|        |_________|_________|
%e A236865 .
%e A236865 .___________________          ___________________
%e A236865 |         |         |        |         |         |
%e A236865 |         |_________|        |         |         |
%e A236865 |         |         |        |         |_________|
%e A236865 |    .    |         |        |    .    |         |
%e A236865 |         |         |        |         |         |
%e A236865 |         |    .    |        |         |         |
%e A236865 |_________|         |        |_________|    .    |
%e A236865 |         |         |        |         |         |
%e A236865 |         |_________|        |         |         |
%e A236865 |         |         |        |         |_________|
%e A236865 |    .    |         |        |    .    |         |
%e A236865 |         |         |        |         |         |
%e A236865 |         |         |        |         |         |
%e A236865 |_________|_________|        |_________|_________|
%Y A236865 Cf. A054252, A236679, A236560, A236757, A236800, A236829, A236915, A236936, A236939.
%K A236865 tabf,nonn
%O A236865 7,6
%A A236865 _Christopher Hunt Gribble_, Jan 31 2014