cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236913 Number of partitions of 2n of type EE (see Comments).

This page as a plain text file.
%I A236913 #23 Feb 11 2021 22:59:47
%S A236913 1,1,3,6,12,22,40,69,118,195,317,505,793,1224,1867,2811,4186,6168,
%T A236913 9005,13026,18692,26613,37619,52815,73680,102162,140853,193144,263490,
%U A236913 357699,483338,650196,870953,1161916,1544048,2044188,2696627,3545015,4644850,6066425
%N A236913 Number of partitions of 2n of type EE (see Comments).
%C A236913 The partitions of n are partitioned into four types:
%C A236913 EO, even # of odd parts and odd  # of even parts, A236559;
%C A236913 OE, odd  # of odd parts and even # of even parts, A160786;
%C A236913 EE, even # of odd parts and even # of even parts, A236913;
%C A236913 OO, odd  # of odd parts and odd  # of even parts, A236914.
%C A236913 A236559 and A160786 are the bisections of A027193;
%C A236913 A236913 and A236914 are the bisections of A027187.
%H A236913 Alois P. Heinz, <a href="/A236913/b236913.txt">Table of n, a(n) for n = 0..1000</a>
%e A236913 The partitions of 4 of type EE are [3,1], [2,2], [1,1,1,1], so that a(2) = 3.
%e A236913 type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11
%e A236913 EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0
%e A236913 OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29
%e A236913 EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0
%e A236913 OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27
%e A236913 From _Gus Wiseman_, Feb 09 2021: (Start)
%e A236913 This sequence counts even-length partitions of even numbers, which have Heinz numbers given by A340784. For example, the a(0) = 1 through a(4) = 12 partitions are:
%e A236913   ()  (11)  (22)    (33)      (44)
%e A236913             (31)    (42)      (53)
%e A236913             (1111)  (51)      (62)
%e A236913                     (2211)    (71)
%e A236913                     (3111)    (2222)
%e A236913                     (111111)  (3221)
%e A236913                               (3311)
%e A236913                               (4211)
%e A236913                               (5111)
%e A236913                               (221111)
%e A236913                               (311111)
%e A236913                               (11111111)
%e A236913 (End)
%p A236913 b:= proc(n, i) option remember; `if`(n=0, [1, 0$3],
%p A236913       `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p->
%p A236913       `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]],
%p A236913           [p[2], p[1], p[4], p[3]]))(b(n-i, i)))))
%p A236913     end:
%p A236913 a:= n-> b(2*n$2)[1]:
%p A236913 seq(a(n), n=0..40);  # _Alois P. Heinz_, Feb 16 2014
%t A236913 z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,  OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,      OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
%t A236913 OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
%t A236913 OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]];
%t A236913 m1 (* A236559, type EO*)
%t A236913 m2 (* A160786, type OE*)
%t A236913 m3 (* A236913, type EE*)
%t A236913 m4 (* A236914, type OO*)
%t A236913 (* _Peter J. C. Moses_, Feb 03 2014 *)
%t A236913 b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n - i, i]]]]]; a[n_] := b[2*n, 2*n][[1]]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Oct 27 2015, after _Alois P. Heinz_ *)
%t A236913 Table[Length[Select[IntegerPartitions[2n],EvenQ[Length[#]]&]],{n,0,15}] (* _Gus Wiseman_, Feb 09 2021 *)
%Y A236913 Cf. A000041, A027193, A236559, A236914.
%Y A236913 Note: A-numbers of ranking sequences are in parentheses below.
%Y A236913 The ordered version is A000302.
%Y A236913 The case of odd-length partitions of odd numbers is A160786 (A340931).
%Y A236913 The Heinz numbers of these partitions are (A340784).
%Y A236913 A027187 counts partitions of even length/maximum (A028260/A244990).
%Y A236913 A034008 counts compositions of even length.
%Y A236913 A035363 counts partitions into even parts (A066207).
%Y A236913 A047993 counts balanced partitions (A106529).
%Y A236913 A058695 counts partitions of odd numbers (A300063).
%Y A236913 A058696 counts partitions of even numbers (A300061).
%Y A236913 A067661 counts strict partitions of even length (A030229).
%Y A236913 A072233 counts partitions by sum and length.
%Y A236913 A339846 counts factorizations of even length.
%Y A236913 A340601 counts partitions of even rank (A340602).
%Y A236913 A340785 counts factorizations into even factors.
%Y A236913 A340786 counts even-length factorizations into even factors.
%K A236913 nonn,easy
%O A236913 0,3
%A A236913 _Clark Kimberling_, Feb 01 2014
%E A236913 More terms from _Alois P. Heinz_, Feb 16 2014