cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236915 Number T(n,k) of equivalence classes of ways of placing k 8 X 8 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=8, 0<=k<=floor(n/8)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 1, 15, 25, 5, 1, 1, 15, 79, 65, 14, 1, 21, 187, 377, 174, 1, 21, 351, 1365, 1234, 1, 28, 606, 3900, 6124, 1, 28, 948, 9282, 23259, 1, 36, 1426, 19726, 73204, 1, 36, 2026, 38046, 199436
Offset: 8

Views

Author

Keywords

Comments

The first 16 rows of T(n,k) are:
.\ k 0 1 2 3 4
n
8 1 1
9 1 1
10 1 3
11 1 3
12 1 6
13 1 6
14 1 10
15 1 10
16 1 15 25 5 1
17 1 15 79 65 14
18 1 21 187 377 174
19 1 21 351 1365 1234
20 1 28 606 3900 6124
21 1 28 948 9282 23259
22 1 36 1426 19726 73204
23 1 36 2026 38046 199436

Examples

			T(16,3) = 5 because the number of equivalence classes of ways of placing 3 8 X 8 square tiles in an 16 X 16 square under all symmetry operations of the square is 5. The portrayal of an example from each equivalence class is:
._____________________        _____________________
|          |          |      |          |__________|
|          |          |      |          |          |
|          |          |      |          |          |
|     .    |     .    |      |     .    |          |
|          |          |      |          |     .    |
|          |          |      |          |          |
|          |          |      |          |          |
|__________|__________|      |__________|          |
|          |          |      |          |__________|
|          |          |      |          |          |
|          |          |      |          |          |
|    .     |          |      |     .    |          |
|          |          |      |          |          |
|          |          |      |          |          |
|          |          |      |          |          |
|__________|__________|      |__________|__________|
.
._____________________        _____________________
|          |          |      |          |          |
|          |__________|      |          |          |
|          |          |      |          |__________|
|     .    |          |      |     .    |          |
|          |          |      |          |          |
|          |     .    |      |          |          |
|          |          |      |          |     .    |
|__________|          |      |__________|          |
|          |          |      |          |          |
|          |__________|      |          |          |
|          |          |      |          |__________|
|     .    |          |      |     .    |          |
|          |          |      |          |          |
|          |          |      |          |          |
|          |          |      |          |          |
|__________|__________|      |__________|__________|
.
._____________________
|          |          |
|          |          |
|          |          |
|     .    |__________|
|          |          |
|          |          |
|          |          |
|__________|     .    |
|          |          |
|          |          |
|          |          |
|     .    |__________|
|          |          |
|          |          |
|          |          |
|__________|__________|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 8
T(n,1) = (floor((n-8)/2)+1)*(floor((n-8)/2+2))/2, n >= 8
T(c+2*8,2) = A131474(c+1)*(8-1) + A000217(c+1)*floor(8^2/4) + A014409(c+2), 0 <= c < 8, c even
T(c+2*8,2) = A131474(c+1)*(8-1) + A000217(c+1)*floor((8-1)(8-3)/4) + A014409(c+2), 0 <= c < 8, c odd
T(c+2*8,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((8-c-1)/2) + A131941(c+1)*floor((8-c)/2)) + S(c+1,3c+2,3), 0 <= c < 8 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
A236915(23,3), c = 7