cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236934 Triangle of Poupard numbers g_n(k) read by rows, n>=1, 1<=k<=2n-1.

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 8, 4, 0, 0, 32, 64, 80, 64, 32, 0, 0, 544, 1088, 1504, 1664, 1504, 1088, 544, 0, 0, 15872, 31744, 45440, 54784, 58112, 54784, 45440, 31744, 15872, 0, 0, 707584, 1415168, 2059264, 2576384, 2911744, 3027968, 2911744, 2576384, 2059264, 1415168, 707584, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 17 2014

Keywords

Examples

			Triangle begins:
1,
0, 2, 0,
0, 4, 8, 4, 0,
0, 32, 64, 80, 64, 32, 0,
0, 544, 1088, 1504, 1664, 1504, 1088, 544, 0,
...
		

Crossrefs

Cf. A000182 (row sums), A008282, A125053.

Programs

  • Maple
    T := proc(n,k) option remember; local j;
      if n = 1 then 1
    elif k = 1 then 0
    elif k = 2 then 2*add(T(n-1, j), j=1..2*n-3)
    elif k > n then T(n, 2*n-k)
    else 2*T(n, k-1)-T(n, k-2)-4*T(n-1, k-2)
      fi end:
    seq(print(seq(T(n,k), k=1..2*n-1)), n=1..6); # Peter Luschny, May 11 2014
  • Mathematica
    T[n_, k_] /; 1 <= k <= 2n-1 := T[n, k] = Which[n == 1, 1, k == 1, 0, k == 2, 2 Sum[T[n-1, j], {j, 1, 2n-3}], k > n, T[n, 2n-k], True, 2 T[n, k-1] - T[n, k-2] - 4 T[n-1, k-2]]; T[, ] = 0;
    Table[T[n, k], {n, 1, 7}, {k, 1, 2n-1}] // Flatten (* Jean-François Alcover, Jul 08 2019, from Maple *)

Formula

4^(-n)*sum(k=1..2*n+1, binomial(2*n,k-1)*T(n+1,k)) = A000364(n), n>=0. - Peter Luschny, May 11 2014
(-1)^n*sum(k=1..2*n+1, (-1)^(k-1)*binomial(2*n,k-1)*T(n+1,k)) = A000302(n), n>=0. - Peter Luschny, May 11 2014

Extensions

More terms from Peter Luschny, May 11 2014