This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236936 #21 Feb 17 2014 12:59:17 %S A236936 1,1,1,1,1,3,1,3,1,6,1,6,1,10,1,10,1,15,1,15,30,5,1,1,21,96,74,14,1, %T A236936 21,221,413,174,1,28,417,1525,1234,1,28,705,4290,6124,1,36,1107,10269, %U A236936 23259,1,36,1638,21630,73204,1,45,2334,41790,199436 %N A236936 Number T(n,k) of equivalence classes of ways of placing k 9 X 9 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=9, 0<=k<=floor(n/9)^2, read by rows. %H A236936 Christopher Hunt Gribble, <a href="/A236936/a236936.cpp.txt">C++ program</a> %H A236936 Christopher Hunt Gribble, <a href="/A236936/a236936.txt">Example graphics</a> %F A236936 It appears that: %F A236936 T(n,0) = 1, n>= 9 %F A236936 T(n,1) = (floor((n-9)/2)+1)*(floor((n-9)/2+2))/2, n >= 9 %F A236936 T(c+2*9,2) = A131474(c+1)*(9-1) + A000217(c+1)*floor(9^2/4) + A014409(c+2), 0 <= c < 9, c even %F A236936 T(c+2*9,2) = A131474(c+1)*(9-1) + A000217(c+1)*floor((9-1)(9-3)/4) + A014409(c+2), 0 <= c < 9, c odd %F A236936 T(c+2*9,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((9-c-1)/2) + A131941(c+1)*floor((9-c)/2)) + S(c+1,3c+2,3), 0 <= c < 9 where %F A236936 S(c+1,3c+2,3) = %F A236936 A054252(2,3), c = 0 %F A236936 A236679(5,3), c = 1 %F A236936 A236560(8,3), c = 2 %F A236936 A236757(11,3), c = 3 %F A236936 A236800(14,3), c = 4 %F A236936 A236829(17,3), c = 5 %F A236936 A236865(20,3), c = 6 %F A236936 A236915(23,3), c = 7 %F A236936 A236936(26,3), c = 8 %e A236936 The first 17 rows of T(n,k) are: %e A236936 .\ k 0 1 2 3 4 %e A236936 n %e A236936 9 1 1 %e A236936 10 1 1 %e A236936 11 1 3 %e A236936 12 1 3 %e A236936 13 1 6 %e A236936 14 1 6 %e A236936 15 1 10 %e A236936 16 1 10 %e A236936 17 1 15 %e A236936 18 1 15 30 5 1 %e A236936 19 1 21 96 74 14 %e A236936 20 1 21 221 413 174 %e A236936 21 1 28 417 1525 1234 %e A236936 22 1 28 705 4290 6124 %e A236936 23 1 36 1107 10269 23259 %e A236936 24 1 36 1638 21630 73204 %e A236936 25 1 45 2334 41790 199436 %e A236936 . %e A236936 T(18,3) = 5 because the number of equivalence classes of ways of placing 3 9 X 9 square tiles in an 18 X 18 square under all symmetry operations of the square is 5. %Y A236936 Cf. A054252, A236679, A236560, A236757, A236800, A236829, A236865, A236915, A236939. %K A236936 tabf,nonn %O A236936 9,6 %A A236936 _Christopher Hunt Gribble_, Feb 01 2014