cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236939 Number T(n,k) of equivalence classes of ways of placing k 10 X 10 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=10, 0<=k<=floor(n/10)^2, read by rows.

This page as a plain text file.
%I A236939 #20 Feb 17 2014 12:55:51
%S A236939 1,1,1,1,1,3,1,3,1,6,1,6,1,10,1,10,1,15,1,15,1,21,36,6,1,1,21,113,80,
%T A236939 14,1,28,261,461,174,1,28,483,1665,1234,1,36,819,4725,6124,1,36,1266,
%U A236939 11193,23259,1,45,1878,23646,73204
%N A236939 Number T(n,k) of equivalence classes of ways of placing k 10 X 10 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=10, 0<=k<=floor(n/10)^2, read by rows.
%H A236939 Christopher Hunt Gribble, <a href="/A236939/a236939.cpp.txt">C++ program</a>
%H A236939 Christopher Hunt Gribble, <a href="/A236939/a236939.txt">Example graphics</a>
%F A236939 It appears that:
%F A236939 T(n,0) = 1, n>= 10
%F A236939 T(n,1) = (floor((n-10)/2)+1)*(floor((n-10)/2+2))/2, n >= 10
%F A236939 T(c+2*10,2) =  A131474(c+1)*(10-1) + A000217(c+1)*floor(10^2/4) + A014409(c+2), 0 <= c < 10, c even
%F A236939 T(c+2*10,2) = A131474(c+1)*(10-1) + A000217(c+1)*floor((10-1)(10-3)/4) + A014409(c+2), 0 <= c < 10, c odd
%F A236939 T(c+2*10,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((10-c-1)/2) + A131941(c+1)*floor((10-c)/2)) + S(c+1,3c+2,3), 0 <= c < 10 where
%F A236939 S(c+1,3c+2,3) =
%F A236939 A054252(2,3),  c = 0
%F A236939 A236679(5,3),  c = 1
%F A236939 A236560(8,3),  c = 2
%F A236939 A236757(11,3), c = 3
%F A236939 A236800(14,3), c = 4
%F A236939 A236829(17,3), c = 5
%F A236939 A236865(20,3), c = 6
%F A236939 A236915(23,3), c = 7
%F A236939 A236936(26,3), c = 8
%F A236939 A236939(29,3), c = 9
%e A236939 The first 17 rows of T(n,k) are:
%e A236939 .\ k  0     1     2     3     4
%e A236939 n
%e A236939 10    1     1
%e A236939 11    1     1
%e A236939 12    1     3
%e A236939 13    1     3
%e A236939 14    1     6
%e A236939 15    1     6
%e A236939 16    1    10
%e A236939 17    1    10
%e A236939 18    1    15
%e A236939 19    1    15
%e A236939 20    1    21    36     6     1
%e A236939 21    1    21   113    80    14
%e A236939 22    1    28   261   461   174
%e A236939 23    1    28   483  1665  1234
%e A236939 24    1    36   819  4725  6124
%e A236939 25    1    36  1266 11193 23259
%e A236939 26    1    45  1878 23646 73204
%e A236939 .
%e A236939 T(20,3) = 6 because the number of equivalence classes of ways of placing 3 10 X 10 square tiles in a 20 X 20 square under all symmetry operations of the square is 6.
%Y A236939 Cf. A054252, A236679, A236560, A236757, A236800, A236829, A236865, A236915, A236936
%K A236939 tabf,nonn
%O A236939 10,6
%A A236939 _Christopher Hunt Gribble_, Feb 01 2014