cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236940 Primes p such that p^4-p+1 is prime.

This page as a plain text file.
%I A236940 #15 Sep 08 2022 08:46:06
%S A236940 3,13,19,43,79,109,313,379,613,709,1171,1213,1399,1543,1693,1759,1861,
%T A236940 1933,2089,2239,2341,2371,2503,2521,2731,2749,3001,3061,3229,3433,
%U A236940 3571,3739,3769,4219,4801,4933,4951,4993,5011,5023,5209,5281
%N A236940 Primes p such that p^4-p+1 is prime.
%C A236940 Primes in the sequence A236761.
%H A236940 Vincenzo Librandi, <a href="/A236940/b236940.txt">Table of n, a(n) for n = 1..1000</a>
%e A236940 1213 is prime and 1213^4 - 1213 + 1 = 2164926732949 is prime. Thus, 1213 is a member of this sequence.
%t A236940 Select[Prime[Range[10000]], PrimeQ[#^4 - # + 1]&] (* _Vincenzo Librandi_, Feb 14 2014 *)
%o A236940 (Python)
%o A236940 import sympy
%o A236940 from sympy import isprime
%o A236940 {print(n) for n in range(10**4) if isprime(n) and isprime(n**4-n+1)}
%o A236940 (PARI)
%o A236940 s=[]; forprime(p=2, 6000, if(isprime(p^4-p+1), s=concat(s, p))); s \\ _Colin Barker_, Feb 05 2014
%o A236940 (Magma) [p: p in PrimesUpTo(6000) | IsPrime(p^4-p+1)]; // _Vincenzo Librandi_, Feb 14 2014
%Y A236940 Cf. A236761.
%K A236940 nonn
%O A236940 1,1
%A A236940 _Derek Orr_, Feb 01 2014