cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236950 Primes p such that p^4+p-1 is prime.

This page as a plain text file.
%I A236950 #14 Sep 08 2022 08:46:06
%S A236950 2,3,13,17,23,31,43,157,229,293,353,373,397,409,463,521,577,619,727,
%T A236950 743,857,883,953,1049,1087,1123,1171,1319,1409,1423,1429,1459,1499,
%U A236950 1511,1543,1619,1693,1847,1871,1931,1951,1993,2017,2029,2129
%N A236950 Primes p such that p^4+p-1 is prime.
%C A236950 Primes in the sequence A236759.
%H A236950 Vincenzo Librandi, <a href="/A236950/b236950.txt">Table of n, a(n) for n = 1..1000</a>
%e A236950 577 is prime and 577^4 + 577 - 1 = 110841719617 is prime. Thus, 577 is a member of this sequence.
%t A236950 Select[Prime[Range[5000]], PrimeQ[#^4 + # - 1]&] (* _Vincenzo Librandi_, Feb 14 2014 *)
%o A236950 (Python)
%o A236950 import sympy
%o A236950 from sympy import isprime
%o A236950 {print(n) for n in range(10**4) if isprime(n) and isprime(n**4+n-1)}
%o A236950 (PARI)
%o A236950 s=[]; forprime(p=2, 6000, if(isprime(p^4+p-1), s=concat(s, p))); s \\ _Colin Barker_, Feb 05 2014
%o A236950 (Magma) [p: p in PrimesUpTo(6000) | IsPrime(p^4+p-1)]; // _Vincenzo Librandi_, Feb 14 2014
%Y A236950 Cf. A236759.
%K A236950 nonn
%O A236950 1,1
%A A236950 _Derek Orr_, Feb 01 2014