cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236951 Primes p such that p^4 + p +/- 1 are twin primes.

This page as a plain text file.
%I A236951 #14 Sep 08 2022 08:46:06
%S A236951 2,1049,1847,1871,2129,2789,5351,10709,11279,13907,14321,17627,27179,
%T A236951 27809,29921,30029,31859,37511,39359,40559,40841,43577,46091,46301,
%U A236951 58271,62207,62981,66347,66947,68777,72341,75617,79397,85091,86579
%N A236951 Primes p such that p^4 + p +/- 1 are twin primes.
%C A236951 Intersection of A236044 and A236950.
%H A236951 Vincenzo Librandi, <a href="/A236951/b236951.txt">Table of n, a(n) for n = 1..900</a>
%e A236951 2 is prime and 2^4+2+1 (19) and 2^4+2-1 (17) are twin primes. Thus, 2 is a member of this sequence.
%t A236951 Select[Prime[Range[100000]], PrimeQ[#^4 + # - 1] && PrimeQ[#^4 + # + 1]&] (* _Vincenzo Librandi_, Feb 14 2014 *)
%o A236951 (Python)
%o A236951 import sympy
%o A236951 from sympy import isprime
%o A236951 {print(p) for p in range(10**6) if isprime(p) and isprime(p**4+p+1) and isprime(p**4+p-1)}
%o A236951 (Magma) [p: p in PrimesUpTo(90000) | IsPrime(p^4+p-1) and IsPrime(p^4+p+1)]; // _Vincenzo Librandi_, Feb 14 2014
%Y A236951 Cf. A236044, A236950.
%K A236951 nonn
%O A236951 1,1
%A A236951 _Derek Orr_, Feb 01 2014