cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236952 Primes p such that p^4 - p +/- 1 are twin primes.

This page as a plain text file.
%I A236952 #16 Sep 08 2022 08:46:06
%S A236952 13,79,3571,3739,5023,5443,7459,7621,10243,13339,14251,17359,17551,
%T A236952 17863,17971,18061,19483,21481,27631,32611,37501,38821,48463,49711,
%U A236952 54709,56443,57073,57751,69313,71353,72883,74293,81883,82051,84223
%N A236952 Primes p such that p^4 - p +/- 1 are twin primes.
%C A236952 Intersection of A236940 and A236071.
%H A236952 Vincenzo Librandi, <a href="/A236952/b236952.txt">Table of n, a(n) for n = 1..900</a>
%e A236952 13 is prime and 13^4-13-1 (28547) and 13^4-13+1 (28549) are twin primes. So, 13 is a member of this sequence.
%t A236952 Select[Prime[Range[10000]], PrimeQ[#^4 - # - 1] && PrimeQ[#^4 - # + 1]&] (* _Vincenzo Librandi_, Feb 14 2014 *)
%o A236952 (Python)
%o A236952 import sympy
%o A236952 from sympy import isprime
%o A236952 {print(n) for n in range(10**6) if isprime(n) and isprime(n**4-n-1) and isprime(n**4-n+1)}
%o A236952 (Magma) [p: p in PrimesUpTo(90000) | IsPrime(p^4-p-1) and IsPrime(p^4-p+1)]; // _Vincenzo Librandi_, Feb 14 2014
%Y A236952 Cf. A236940, A236071.
%K A236952 nonn
%O A236952 1,1
%A A236952 _Derek Orr_, Feb 01 2014