cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236960 Given g.f. A(x) of this sequence, triangle A236961 transforms the diagonals in the table of successive iterations of A(x) such that A236961(n,0) = n^n.

This page as a plain text file.
%I A236960 #10 Apr 18 2023 08:49:47
%S A236960 1,1,2,5,16,79,720,10735,211802,4968491,132655760,3943593218,
%T A236960 128724395888,4567299614131,174792721389278,7170679832812100,
%U A236960 313729852611817418,14576333351368836005,716547887877448952206,37150482490370675725494,2025776434511141860123174,115890536127998971200900825
%N A236960 Given g.f. A(x) of this sequence, triangle A236961 transforms the diagonals in the table of successive iterations of A(x) such that A236961(n,0) = n^n.
%H A236960 Paul D. Hanna, <a href="/A236960/b236960.txt">Table of n, a(n) for n = 1..63</a>
%e A236960 G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 79*x^6 + 720*x^7 + 10735*x^8 + 211802*x^9 + 4968491*x^10 + 132655760*x^11 + 3943593218*x^12 +...
%e A236960 The table of coefficients in the successive iterations of A(x) begins:
%e A236960 [1,  0,   0,    0,     0,      0,       0,        0,         0, ...];
%e A236960 [1,  1,   2,    5,    16,     79,     720,    10735,    211802, ...];
%e A236960 [1,  2,   6,   21,    84,    410,    2876,    33235,    581074, ...];
%e A236960 [1,  3,  12,   54,   266,   1463,    9740,    90999,   1308954, ...];
%e A236960 [1,  4,  20,  110,   648,   4102,   28932,   248808,   2972926, ...];
%e A236960 [1,  5,  30,  195,  1340,   9705,   75264,   655599,   7059436, ...];
%e A236960 [1,  6,  42,  315,  2476,  20284,  174304,  1610487,  16952240, ...];
%e A236960 [1,  7,  56,  476,  4214,  38605,  366660,  3656975,  39586868, ...];
%e A236960 [1,  8,  72,  684,  6736,  68308,  712984,  7710392,  88021908, ...];
%e A236960 [1,  9,  90,  945, 10248, 114027, 1299696, 15223599, 185218134, ...];
%e A236960 [1, 10, 110, 1265, 14980, 181510, 2245428, 28396003, 369356822, ...]; ...
%e A236960 Then the triangle T=A236961 transforms the adjacent diagonals in the above table into each other, as illustrated by:
%e A236960 T*[1, 1,  6,  54,  648,  9705, 174304, 3656975,  88021908, ...]
%e A236960 = [1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...];
%e A236960 T*[1, 2, 12, 110, 1340, 20284, 366660,  7710392, 185218134, ...]
%e A236960 = [1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...];
%e A236960 T*[1, 3, 20, 195, 2476, 38605,  712984, 15223599, 369356822, ...]
%e A236960 = [1, 4, 30, 315, 4214, 68308, 1299696, 28396003, 701068918, ...]; ...
%e A236960 Triangle T=A236961 begins:
%e A236960 1;
%e A236960 1, 1;
%e A236960 4, 2, 1;
%e A236960 27, 11, 3, 1;
%e A236960 256, 94, 21, 4, 1;
%e A236960 3125, 1076, 217, 34, 5, 1;
%e A236960 46656, 15362, 2910, 412, 50, 6, 1;
%e A236960 823543, 262171, 47598, 6333, 695, 69, 7, 1;
%e A236960 16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1;
%e A236960 387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1;
%e A236960 10000000000, 2970653234, 501463686, 60678776, 5824330, 471666, 33761, 2232, 144, 10, 1; ...
%e A236960 such that column 0 equals A236961(n,0) = n^n.
%o A236960 (PARI) /* From Root Series G, Calculate T(n,k) of Triangle: */
%o A236960 {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
%o A236960 for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c));
%o A236960 N=matrix(m+1, m+1, r, c, M[r, c]);
%o A236960 P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
%o A236960 /* Calculates Root Series G and then Prints ROWS of Triangle: */
%o A236960 {ROWS=12;V=[1,1];print("");print1("Root Sequence: [1, 1, ");
%o A236960 for(i=2,ROWS,V=concat(V,0);G=x*truncate(Ser(V));
%o A236960 for(n=0,#V-1,if(n==#V-1,V[#V]=n^n-T(n,0));for(k=0,n, T(n,k)));print1(V[#V]", "););
%o A236960 print1("...]");print("");print("");print("Triangle begins:");
%o A236960 for(n=0,#V-2,for(k=0,n,print1(T(n,k),", "));print(""))}
%Y A236960 Cf. A236961.
%K A236960 nonn
%O A236960 1,3
%A A236960 _Paul D. Hanna_, Feb 01 2014