This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236960 #10 Apr 18 2023 08:49:47 %S A236960 1,1,2,5,16,79,720,10735,211802,4968491,132655760,3943593218, %T A236960 128724395888,4567299614131,174792721389278,7170679832812100, %U A236960 313729852611817418,14576333351368836005,716547887877448952206,37150482490370675725494,2025776434511141860123174,115890536127998971200900825 %N A236960 Given g.f. A(x) of this sequence, triangle A236961 transforms the diagonals in the table of successive iterations of A(x) such that A236961(n,0) = n^n. %H A236960 Paul D. Hanna, <a href="/A236960/b236960.txt">Table of n, a(n) for n = 1..63</a> %e A236960 G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 79*x^6 + 720*x^7 + 10735*x^8 + 211802*x^9 + 4968491*x^10 + 132655760*x^11 + 3943593218*x^12 +... %e A236960 The table of coefficients in the successive iterations of A(x) begins: %e A236960 [1, 0, 0, 0, 0, 0, 0, 0, 0, ...]; %e A236960 [1, 1, 2, 5, 16, 79, 720, 10735, 211802, ...]; %e A236960 [1, 2, 6, 21, 84, 410, 2876, 33235, 581074, ...]; %e A236960 [1, 3, 12, 54, 266, 1463, 9740, 90999, 1308954, ...]; %e A236960 [1, 4, 20, 110, 648, 4102, 28932, 248808, 2972926, ...]; %e A236960 [1, 5, 30, 195, 1340, 9705, 75264, 655599, 7059436, ...]; %e A236960 [1, 6, 42, 315, 2476, 20284, 174304, 1610487, 16952240, ...]; %e A236960 [1, 7, 56, 476, 4214, 38605, 366660, 3656975, 39586868, ...]; %e A236960 [1, 8, 72, 684, 6736, 68308, 712984, 7710392, 88021908, ...]; %e A236960 [1, 9, 90, 945, 10248, 114027, 1299696, 15223599, 185218134, ...]; %e A236960 [1, 10, 110, 1265, 14980, 181510, 2245428, 28396003, 369356822, ...]; ... %e A236960 Then the triangle T=A236961 transforms the adjacent diagonals in the above table into each other, as illustrated by: %e A236960 T*[1, 1, 6, 54, 648, 9705, 174304, 3656975, 88021908, ...] %e A236960 = [1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...]; %e A236960 T*[1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...] %e A236960 = [1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...]; %e A236960 T*[1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...] %e A236960 = [1, 4, 30, 315, 4214, 68308, 1299696, 28396003, 701068918, ...]; ... %e A236960 Triangle T=A236961 begins: %e A236960 1; %e A236960 1, 1; %e A236960 4, 2, 1; %e A236960 27, 11, 3, 1; %e A236960 256, 94, 21, 4, 1; %e A236960 3125, 1076, 217, 34, 5, 1; %e A236960 46656, 15362, 2910, 412, 50, 6, 1; %e A236960 823543, 262171, 47598, 6333, 695, 69, 7, 1; %e A236960 16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1; %e A236960 387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1; %e A236960 10000000000, 2970653234, 501463686, 60678776, 5824330, 471666, 33761, 2232, 144, 10, 1; ... %e A236960 such that column 0 equals A236961(n,0) = n^n. %o A236960 (PARI) /* From Root Series G, Calculate T(n,k) of Triangle: */ %o A236960 {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; %o A236960 for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c)); %o A236960 N=matrix(m+1, m+1, r, c, M[r, c]); %o A236960 P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]} %o A236960 /* Calculates Root Series G and then Prints ROWS of Triangle: */ %o A236960 {ROWS=12;V=[1,1];print("");print1("Root Sequence: [1, 1, "); %o A236960 for(i=2,ROWS,V=concat(V,0);G=x*truncate(Ser(V)); %o A236960 for(n=0,#V-1,if(n==#V-1,V[#V]=n^n-T(n,0));for(k=0,n, T(n,k)));print1(V[#V]", ");); %o A236960 print1("...]");print("");print("");print("Triangle begins:"); %o A236960 for(n=0,#V-2,for(k=0,n,print1(T(n,k),", "));print(""))} %Y A236960 Cf. A236961. %K A236960 nonn %O A236960 1,3 %A A236960 _Paul D. Hanna_, Feb 01 2014