cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236961 Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of g.f. of A236960 such that column 0 equals T(n,0) = n^n.

This page as a plain text file.
%I A236961 #15 Jan 15 2023 13:24:17
%S A236961 1,1,1,4,2,1,27,11,3,1,256,94,21,4,1,3125,1076,217,34,5,1,46656,15362,
%T A236961 2910,412,50,6,1,823543,262171,47598,6333,695,69,7,1,16777216,5198778,
%U A236961 915221,116768,12045,1082,91,8,1,387420489,117368024,20182962,2498414,247151,20871,1589,116,9,1,10000000000
%N A236961 Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of g.f. of A236960 such that column 0 equals T(n,0) = n^n.
%H A236961 Paul D. Hanna, <a href="/A236961/b236961.txt">Table of n, a(n) for n = 0..1829 (rows 0..60)</a>
%e A236961 This triangle begins:
%e A236961 1;
%e A236961 1, 1;
%e A236961 4, 2, 1;
%e A236961 27, 11, 3, 1;
%e A236961 256, 94, 21, 4, 1;
%e A236961 3125, 1076, 217, 34, 5, 1;
%e A236961 46656, 15362, 2910, 412, 50, 6, 1;
%e A236961 823543, 262171, 47598, 6333, 695, 69, 7, 1;
%e A236961 16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1;
%e A236961 387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1;
%e A236961 10000000000, 2970653234, 501463686, 60678776, 5824330, 471666, 33761, 2232, 144, 10, 1; ...
%e A236961 in which column 0 equals T(n,0) = n^n.
%e A236961 ILLUSTRATION.
%e A236961 This triangle transforms diagonals in the table of coefficients in the iterations of G(x), the g.f. of A236960, that starts as:
%e A236961 G(x) = x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 79*x^6 + 720*x^7 + 10735*x^8 + 211802*x^9 + 4968491*x^10 + 132655760*x^11 + 3943593218*x^12 +...
%e A236961 The table of coefficients in the successive iterations of G(x) begins:
%e A236961 [1,  0,   0,    0,     0,      0,       0,        0,         0, ...];
%e A236961 [1,  1,   2,    5,    16,     79,     720,    10735,    211802, ...];
%e A236961 [1,  2,   6,   21,    84,    410,    2876,    33235,    581074, ...];
%e A236961 [1,  3,  12,   54,   266,   1463,    9740,    90999,   1308954, ...];
%e A236961 [1,  4,  20,  110,   648,   4102,   28932,   248808,   2972926, ...];
%e A236961 [1,  5,  30,  195,  1340,   9705,   75264,   655599,   7059436, ...];
%e A236961 [1,  6,  42,  315,  2476,  20284,  174304,  1610487,  16952240, ...];
%e A236961 [1,  7,  56,  476,  4214,  38605,  366660,  3656975,  39586868, ...];
%e A236961 [1,  8,  72,  684,  6736,  68308,  712984,  7710392,  88021908, ...];
%e A236961 [1,  9,  90,  945, 10248, 114027, 1299696, 15223599, 185218134, ...];
%e A236961 [1, 10, 110, 1265, 14980, 181510, 2245428, 28396003, 369356822, ...]; ...
%e A236961 Then this triangle T transforms the adjacent diagonals in the above table into each other, as illustrated by:
%e A236961 T*[1, 1,  6,  54,  648,  9705, 174304, 3656975,  88021908, ...]
%e A236961 = [1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...];
%e A236961 T*[1, 2, 12, 110, 1340, 20284, 366660,  7710392, 185218134, ...]
%e A236961 = [1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...];
%e A236961 T*[1, 3, 20, 195, 2476, 38605,  712984, 15223599, 369356822, ...]
%e A236961 = [1, 4, 30, 315, 4214, 68308, 1299696, 28396003, 701068918, ...]; ...
%e A236961 RELATED TRIANGLE.
%e A236961 Compare this triangle to the triangle A088956(n,k) = (n-k+1)^(n-k-1)*C(n,k), that transforms diagonals in the table of coefficients in the iterations of x/(1-x):
%e A236961 1;
%e A236961 1, 1;
%e A236961 3, 2, 1;
%e A236961 16, 9, 3, 1;
%e A236961 125, 64, 18, 4, 1;
%e A236961 1296, 625, 160, 30, 5, 1;
%e A236961 16807, 7776, 1875, 320, 45, 6, 1; ...
%o A236961 (PARI) /* From Root Series G, Calculate T(n,k) of Triangle: */
%o A236961 {T(n, k) = my(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
%o A236961 for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c));
%o A236961 N=matrix(m+1, m+1, r, c, M[r, c]);
%o A236961 P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
%o A236961 /* Calculates Root Series G and then Prints ROWS of Triangle: */
%o A236961 {ROWS=12;V=[1,1];print("");print1("Root Sequence: [1, 1, ");
%o A236961 for(i=2,ROWS,V=concat(V,0);G=x*truncate(Ser(V));
%o A236961 for(n=0,#V-1,if(n==#V-1,V[#V]=n^n-T(n,0));for(k=0,n, T(n,k)));print1(V[#V]", "););
%o A236961 print1("...]");print("");print("");print("Triangle begins:");
%o A236961 for(n=0,#V-2,for(k=0,n,print1(T(n,k),", "));print(""))}
%Y A236961 Cf. A236960, A236962, A236963, A236964, A359716, A359717 (row sums).
%Y A236961 Cf. variants: A233531, A088956.
%K A236961 nonn,tabl
%O A236961 0,4
%A A236961 _Paul D. Hanna_, Feb 01 2014