This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236966 #22 Aug 05 2019 02:48:46 %S A236966 0,0,1,1,1,1,3,2,1,3,2,1,2,2,5,6,3,4,3,5,4,5,7,9,3,5,2,10,7,7,7,7,9,5, %T A236966 10,4,5,7,12,11,14,6,7,5,10,9,8,5,12,15,14,8,12,11,16,12,16,9,12,10, %U A236966 10,14,15,10,12,14,9,10,21,9,22,21,11,9,18,24,20,17,17,16 %N A236966 Number of primes p < prime(n)/2 such that 2^p - 1 is a primitive root modulo prime(n). %C A236966 Conjecture: a(n) > 0 for all n > 2. In other words, for any prime p > 3, there is a prime q < p/2 with the Mersenne number 2^q - 1 a primitive root modulo p. %C A236966 We have verified this for all n = 3, ..., 530000. %C A236966 See also the comment in A234972. %H A236966 Zhi-Wei Sun, <a href="/A236966/b236966.txt">Table of n, a(n) for n = 1..1200</a> %H A236966 Z.-W. Sun, <a href="http://arxiv.org/abs/1405.0290">New observations on primitive roots modulo primes</a>, arXiv preprint arXiv:1405.0290 [math.NT], 2014. %e A236966 a(12) = 1 since 17 is a prime smaller than prime(12)/2 = 37/2 with 2^(17) - 1 = 131071 a primitive root modulo prime(12) = 37. %t A236966 f[k_]:=2^(Prime[k])-1 %t A236966 dv[n_]:=Divisors[n] %t A236966 Do[m=0;Do[If[Mod[f[k],Prime[n]]==0,Goto[aa],Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}]];m=m+1;Label[aa];Continue,{k,1,PrimePi[(Prime[n]-1)/2]}];Print[n," ",m];Continue,{n,1,80}] %Y A236966 Cf. A000040, A001348, A001918, A234972, A235709, A235712, A236306, A236308. %K A236966 nonn %O A236966 1,7 %A A236966 _Zhi-Wei Sun_, Apr 22 2014