cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236968 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that 6*k - 1, 6*k + 1 and k + phi(m) are all prime, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 2, 2, 1, 2, 2, 3, 3, 1, 4, 4, 3, 5, 3, 1, 1, 4, 5, 6, 3, 1, 4, 4, 3, 2, 2, 3, 3, 5, 3, 6, 5, 1, 6, 1, 4, 6, 4, 1, 6, 7, 8, 6, 2, 2, 5, 8, 4, 4, 3, 3, 7, 8, 3, 5, 3, 4, 6, 7, 8, 9, 5, 2, 3, 2, 4, 7, 5, 2, 2, 6, 6, 8, 5, 1, 6, 2, 6, 7, 3, 3, 8, 8, 6, 5, 2, 5, 6, 9, 9, 5, 4, 1, 7, 2, 3, 9, 6, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 02 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. Also, any n > 12 can be written as k + m (k > 0 and m > 2) with 6*k - 1, 6*k + 1 and k + phi(m)/2 all prime.
(ii) Each integer n > 34 can be written as p + q (q > 0) with p and p + phi(q) both prime. Also, any integer n > 14 can be written as p + q (q > 2) with p, p + 6 and p + phi(q)/2 all prime.
Clearly, part (i) of the conjecture implies that any integer n > 1 can be written as p + m - phi(m), where p is a prime and m is a positive integer.

Examples

			a(17) = 1 since 17 = 7 + 10 with 6*7 - 1 = 41, 6*7 + 1 = 43 and 7 + phi(10) = 7 + 4 = 11 all prime.
a(486) = 1 since 486 = 325 + 161 with 6*325 - 1 = 1949, 6*325 + 1 = 1951 and 325 + phi(161) = 325 + 132 = 457 all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_,k_]:=PrimeQ[6k-1]&&PrimeQ[6k+1]&&PrimeQ[k+EulerPhi[n-k]]
    a[n_]:=Sum[If[p[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]