cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236988 Real part of the product of all the Gaussian integers in the rectangle [1, 1] to [2, n].

This page as a plain text file.
%I A236988 #17 Feb 08 2014 17:28:42
%S A236988 1,-20,140,200,-67600,3983200,-228488000,14375920000,-1002261520000,
%T A236988 74864404160000,-5398716356800000,221997813232000000,
%U A236988 54286859023072000000,-27326116497867200000000,9481971502321385600000000,-3155347494162485190400000000
%N A236988 Real part of the product of all the Gaussian integers in the rectangle [1, 1] to [2, n].
%C A236988 By Gaussian integers, we mean complex numbers of the form a + bi, where both a and b are integers in Z, i = sqrt(-1). Thus the quadratic integer ring under consideration here is Z[i].
%F A236988 a(n) +(2*n+3)*(n-2)*a(n-1) +n*(n+1)*(n^2-4*n+8)*a(n-2) -2*(n^2-4*n+8)*(n^2-4*n+5)*a(n-3)=0. - _R. J. Mathar_, Feb 08 2014
%e A236988 For n = 2, we have (1 + i)(1 + 2i)(2 + i)(2 + 2i) which gives -20 + 0i, so a(2) = -20.
%t A236988 Table[Re[Times@@Flatten[Table[a + b I, {a, 2}, {b, n}]]], {n, 20}] (* _Alonso del Arte_, Feb 02 2014 *)
%o A236988 (JavaScript)
%o A236988 function cNumber(x, y) {
%o A236988 return [x, y];
%o A236988 }
%o A236988 function cMult(a, b) {
%o A236988 return [a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]];
%o A236988 }
%o A236988 for (i = 1; i < 20; i++) {
%o A236988 c = cNumber(1, 0);
%o A236988 for (j = 1; j <= 2; j++)
%o A236988 for (k = 1; k <= i; k++)
%o A236988 c = cMult(c, cNumber(j, k));
%o A236988 document.write(c[0] + ", ");
%o A236988 }
%o A236988 (PARI) a(n) = real(prod(i=1, 2, prod(j=1, n, i+I*j))); \\ _Michel Marcus_, Feb 03 2014
%Y A236988 Cf. A105750, A234459, A204041.
%K A236988 sign
%O A236988 1,2
%A A236988 _Jon Perry_, Feb 02 2014