This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236988 #17 Feb 08 2014 17:28:42 %S A236988 1,-20,140,200,-67600,3983200,-228488000,14375920000,-1002261520000, %T A236988 74864404160000,-5398716356800000,221997813232000000, %U A236988 54286859023072000000,-27326116497867200000000,9481971502321385600000000,-3155347494162485190400000000 %N A236988 Real part of the product of all the Gaussian integers in the rectangle [1, 1] to [2, n]. %C A236988 By Gaussian integers, we mean complex numbers of the form a + bi, where both a and b are integers in Z, i = sqrt(-1). Thus the quadratic integer ring under consideration here is Z[i]. %F A236988 a(n) +(2*n+3)*(n-2)*a(n-1) +n*(n+1)*(n^2-4*n+8)*a(n-2) -2*(n^2-4*n+8)*(n^2-4*n+5)*a(n-3)=0. - _R. J. Mathar_, Feb 08 2014 %e A236988 For n = 2, we have (1 + i)(1 + 2i)(2 + i)(2 + 2i) which gives -20 + 0i, so a(2) = -20. %t A236988 Table[Re[Times@@Flatten[Table[a + b I, {a, 2}, {b, n}]]], {n, 20}] (* _Alonso del Arte_, Feb 02 2014 *) %o A236988 (JavaScript) %o A236988 function cNumber(x, y) { %o A236988 return [x, y]; %o A236988 } %o A236988 function cMult(a, b) { %o A236988 return [a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]]; %o A236988 } %o A236988 for (i = 1; i < 20; i++) { %o A236988 c = cNumber(1, 0); %o A236988 for (j = 1; j <= 2; j++) %o A236988 for (k = 1; k <= i; k++) %o A236988 c = cMult(c, cNumber(j, k)); %o A236988 document.write(c[0] + ", "); %o A236988 } %o A236988 (PARI) a(n) = real(prod(i=1, 2, prod(j=1, n, i+I*j))); \\ _Michel Marcus_, Feb 03 2014 %Y A236988 Cf. A105750, A234459, A204041. %K A236988 sign %O A236988 1,2 %A A236988 _Jon Perry_, Feb 02 2014