A237016 a(n) = |{0 < k < n: phi(k)*sigma(n-k) is a square}|, where phi(.) is Euler's totient function and sigma(j) is the sum of all positive divisors of j.
0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 3, 1, 4, 2, 2, 1, 0, 1, 2, 2, 2, 2, 6, 4, 2, 2, 4, 2, 2, 4, 1, 6, 5, 6, 3, 3, 8, 3, 2, 4, 6, 1, 2, 4, 3, 3, 3, 5, 6, 5, 5, 3, 2, 5, 4, 4, 3, 6, 5, 7, 10, 7, 4, 2, 1, 4, 6, 7, 9, 6, 12, 3, 3, 4, 12, 6, 6, 5, 6, 4, 5, 8, 6, 5, 10, 7, 7, 2, 5, 8, 4, 2, 4, 3, 8, 4, 4, 11, 6, 6
Offset: 1
Keywords
Examples
a(9) = 1 since phi(8)*sigma(1) = 4*1 = 2^2. a(16) = 1 since phi(6)*sigma(10) = 2*18 = 6^2. a(31) = 1 since phi(24)*sigma(7) = 8*8 = 8^2. a(65) = 1 since phi(19)*sigma(46) = 18*72 = 36^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
sigma[n_]:=DivisorSigma[1,n] SQ[n_]:=IntegerQ[Sqrt[n]] p[n_,k_]:=SQ[EulerPhi[k]*sigma[n-k]] a[n_]:=Sum[If[p[n,k],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments