A237049 Number of ordered ways to write n = i + j + k (0 < i <= j <= k) with i,j,k not all equal such that sigma(i)*sigma(j)*sigma(k) is a cube, where sigma(m) denotes the sum of all positive divisors of m.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 2, 1, 0, 0, 2, 2, 1, 1, 1, 3, 4, 2, 3, 3, 1, 2, 3, 2, 3, 2, 2, 3, 2, 1, 0, 5, 3, 4, 3, 1, 2, 4, 1, 2, 3, 5, 7, 5, 6, 3, 4, 6, 7, 6, 7, 3, 8, 2, 7, 6, 4, 3, 8, 7, 6, 6, 2, 7, 5, 7, 2, 8, 4, 8, 6, 5, 7, 7, 9, 10, 5, 9, 7, 11, 3, 6, 7, 8, 8, 7, 5, 6, 5
Offset: 1
Keywords
Examples
a(9) = 1 since 9 = 1 + 1 + 7 with sigma(1)*sigma(1)*sigma(7) = 1*1*8 = 2^3. a(41) = 1 since 41 = 2 + 6 + 33 with sigma(2)*sigma(6)*sigma(33) = 3*12*48 = 12^3. a(50) = 1 since 50 = 2 + 17 + 31 with sigma(2)*sigma(17)*sigma(31) = 3*18*32 = 12^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
sigma[n_]:=DivisorSigma[1,n] CQ[n_]:=IntegerQ[n^(1/3)] p[i_,j_,k_]:=CQ[sigma[i]*sigma[j]*sigma[k]] a[n_]:=Sum[If[p[i,j,n-i-j],1,0],{i,1,(n-1)/3},{j,i,(n-i)/2}] Table[a[n],{n,1,100}]
Comments