This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237109 #53 Jan 05 2023 03:20:39 %S A237109 1,1,1,4,5,1,7,8,3,5,11,4,13,7,5,16,17,3,19,20,7,11,23,8,25,13,9,28, %T A237109 29,5,31,32,11,17,35,12,37,19,13,40,41,7,43,44,15,23,47,16,49,25,17, %U A237109 52,53,9,55,56,19,29,59,20,61,31,21,64,65,11,67,68,23,35,71,24 %N A237109 a(n) is the numerator of 2*n / ((n+2) * (n+3)). %C A237109 Previous name was: Numerators of the third row of the Akiyama-Tanigawa algorithm (or transformation) applied to A001008(n+1)/A002805(n+1). %C A237109 Successive rows: %C A237109 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ...; %C A237109 -1/3, -1/2, -3/5, -2/3, -5/7, -3/4, -7/9, -4/5, ... = A026741(n+1)/A026741(n+3); %C A237109 1/6, 1/5, 1/5, 4/21, 5/28, 1/6, 7/45, 8/55, 3/22, ...; %C A237109 -1/30, 0, ...; %C A237109 -1/30. %C A237109 First column denominators: 2,3,6,30,30,... = A051717(n+1). %C A237109 A001008(n)/A002805(n) is the inverse Akiyama-Tanigawa transformation applied to A027641(n)/A027642(n). A051716(n)/A051717(n) comes from 0 followed by A164555(n)/A027642(n). Then, from the two Bernoulli numbers. %H A237109 G. C. Greubel, <a href="/A237109/b237109.txt">Table of n, a(n) for n = 1..2500</a> %F A237109 a(n) = -a(-n) for all n in Z. - _Michael Somos_, Aug 01 2017 %F A237109 From _Amiram Eldar_, Nov 17 2022: (Start) %F A237109 Multiplicative with a(2) = 1, a(2^e) = 2^e for e > 1, a(3^e) = 3^(e-1), and a(p^e) = p^e for p >= 5. %F A237109 Sum_{k=1..n} a(k) ~ (49/144) * n^2. (End) %F A237109 Dirichlet g.f.: zeta(s-1)*(1-1/2^s+2/4^s)*(1-2/3^s). - _Amiram Eldar_, Jan 05 2023 %t A237109 a[1, n_] := HarmonicNumber[n+1]; a[n_, m_] := a[n, m] = m*(a[n-1, m]-a[n-1, m+1]); Table[a[3, m] // Numerator, {m, 1, 72}] (* _Jean-François Alcover_, Feb 11 2014 *) %t A237109 a[ n_] := n / {1, 2, 3, 1, 1, 6, 1, 1, 3, 2, 1, 3}[[Mod[n, 12, 1]]]; (* _Michael Somos_, Aug 01 2017 *) %o A237109 (PARI) {a(n) = if( n<0, -a(-n), numerator( 2*n / ((n+2) * (n+3))))}; /* _Michael Somos_, Aug 01 2017 */ %o A237109 (Magma) [Numerator(2*n/((n+2)*(n+3))): n in [1..50]]; // _G. C. Greubel_, Aug 07 2018 %K A237109 nonn,frac,mult %O A237109 1,4 %A A237109 _Paul Curtz_, Feb 03 2014 %E A237109 New name using Somos's Pari code from _Joerg Arndt_, May 27 2018 %E A237109 Keyword:mult added by _Andrew Howroyd_, Jul 31 2018