A237110 Maximum number of distinct prime factors of pairs of coprime g and h (g < h) adding to n.
1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 4, 3, 3, 3, 3, 2, 4, 3, 3, 3, 4, 2, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 2, 4, 3, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 3, 4
Offset: 3
Keywords
Examples
n=3, 3=1+2. 1 has no prime factors. 2 has one. So a(3)=0+1=1; n=5, 5=1+4=1+2^2, gives number of prime factors 0+1=1, and 5=2+3, gives 1+1=2. So a(5)=2; ... n=97, 97=1+96=1+2^5*3, gives number of distinct prime factors of g=1 and h=96 0+2=2. Checking all pairs of g, h from 1, 96 through 47, 49 with GCD[g, h]=1, we find that for 97=42+55=2*3*7+5*11 we get 3+2=5 prime factors from g and h. So a(97)=5.
Links
- Lei Zhou, Table of n, a(n) for n = 3..10000
Programs
-
Mathematica
Table[ct = 0; Do[h = n - g; If[GCD[g,h]==1,c=Length[FactorInteger[g]]+Length[FactorInteger[h]]; If[g == 1, c--]; If[h == 1, c--]; If[c > ct, ct = c]], {g, 1, Floor[n/2]}]; ct, {n, 3, 89}]
Comments