A237114 Smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.
10, 9, 33, 129, 2049, 8193, 131073, 524289, 8388609, 21214052113249267732127817825945098816023915043832462900000000000000000000000000001, 2147483649, 356811923176489970264571492362373784095686657, 1821119122882338858450163704901509732674059569636703920027007853793548503164173361298060584748698304513
Offset: 1
Keywords
Examples
Prime(1)=2 and the smallest semiprime of the form k^2+1 is a(1) = 3^2+1 = 10 = 2*5. Prime(2)=3 and the smallest semiprime of the form k^3+1 is a(2) = 2^3+1 = 9 = 3*3.
Programs
-
Mathematica
L = {10}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, q^p + 1], {k, 2, 12}]; L
Comments