cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237115 Lesser prime factor of the smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.

Original entry on oeis.org

2, 3, 3, 3, 3, 3, 3, 3, 3, 691, 3, 17, 313, 3, 7, 11, 7, 3, 11, 47, 19, 3, 1499, 17, 71, 3, 97, 7, 13, 823, 3, 97, 1163, 31, 17, 199, 1907, 53, 3, 17, 1231, 1013, 3, 13, 53, 3, 67, 47, 23, 1013, 787, 127, 347, 17, 37, 97, 683, 631, 73, 4549, 173, 11, 17, 1039, 3, 17, 47, 6389, 3, 461, 23, 673, 37, 29, 331, 7451, 1433, 4561
Offset: 1

Views

Author

Jonathan Sondow, Feb 04 2014

Keywords

Comments

For n > 1, smallest prime p such that ((p-1)^prime(n)+1)/p is prime; the corresponding primes ((p-1)^prime(n)+1)/p are A237116(n) = 3, 11, 43, 683, 2731, 43691, 174763, 2796203, ... and the corresponding semiprimes (p-1)^prime(n)+1 are A237114(n) = 9, 33, 129, 2049, 8193, 131073, 524289, 8388609, ... .

Examples

			Prime(1)=2 and the smallest semiprime of the form k^2+1 is 3^2+1 = 10 = 2*5, so a(1) = 2.
Prime(2)=3 and the smallest semiprime of the form k^3+1 is 2^3+1 = 9 = 3*3, so a(2) = 3.
		

Crossrefs

Programs

  • Mathematica
    L = {2}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, q + 1], {k, 2, 78}]; L

Formula

a(n) = A237114(n)/A237116(n), for n > 0.
(a(n)-1)^prime(n) = A237114(n)-1, for n > 1.
a(n) == A237114(n) (mod prime(n)) (for a proof, see A237114).
a(n) mod prime(n) = A237117(n), if a(n) > 0.