A237116 Larger prime factor of the smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.
5, 3, 11, 43, 683, 2731, 43691, 174763, 2796203, 30700509570548867919143006984001590182379037690061451374819102749638205499276411, 715827883, 20988936657440586486151264256610222593863921, 5818271958090539483866337715340286685859615238455923067178938830011337070812055467405944360219483401
Offset: 1
Keywords
Examples
Prime(1)=2 and the smallest semiprime of the form k^2+1 is 3^2+1 = 10 = 2*5, so a(1) = 5. Prime(2)=3 and the smallest semiprime of the form k^3+1 is 2^3+1 = 9 = 3*3, so a(2) = 3.
Programs
-
Mathematica
L = {5}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, cp], {k, 2, 13}]; L
Comments