cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237117 Remainder mod p of the smallest semiprime of the form k^p+1, where p = prime(n); or -1 if no such semiprime exists.

Original entry on oeis.org

0, 0, 3, 3, 3, 3, 3, 3, 3, 24, 3, 17, 26, 3, 7, 11, 7, 3, 11, 47, 19, 3, 5, 17, 71, 3, 97, 7, 13, 32, 3, 97, 67, 31, 17, 48, 23, 53, 3, 17, 157, 108, 3, 13, 53, 3, 67, 47, 23, 97, 88, 127, 106, 17, 37, 97, 145, 89, 73, 53, 173, 11, 17, 106, 3, 17, 47, 323, 3, 112, 23, 314, 37, 29, 331, 174, 266, 194, 226, 397, 29, 16, 176, 45, 44, 152, 373, 349, 101, 143, 53, 386, 133, 29, 345, 1
Offset: 1

Views

Author

Jonathan Sondow, Feb 06 2014

Keywords

Comments

It appears that a(n) > 0 for all n > 2. See the comments in A237114.

Examples

			Prime(2)=3 and the smallest semiprime of the form k^3+1 is 2^3+1 = 9 = 3*3, so a(2) = 9 mod 3 = 0.
Prime(3)=5 and the smallest semiprime of the form k^5+1 is 2^5+1 = 33 = 3*11, so a(3) = 33 mod 5 = 3.
		

Crossrefs

Programs

  • Mathematica
    L = {0}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, Mod[q^p + 1, p]], {k, 2, 87}]; L

Formula

a(n) = A237114(n) mod prime(n) = A237115(n) mod prime(n), if A237114(n)>0.