This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237124 #21 May 08 2021 02:17:55 %S A237124 1,1,1,1,2,1,3,4,3,1,9,11,8,4,1,28,33,24,13,5,1,90,104,76,43,19,6,1, %T A237124 297,339,249,145,69,26,7,1,1001,1133,836,497,248,103,34,8,1,3432,3861, %U A237124 2860,1727,891,394,146,43,9,1,11934,13364,9932,6071,3211,1484,593,199,53,10,1 %N A237124 Triangle of numbers related to Catalan numbers (A000108). %C A237124 Riordan array (1 +x +x^2*C(x)^3, x*C(x)) where C(x) is the g.f. of A000108. %C A237124 Diagonal sums are A000108(n). %C A237124 Row sums are T(n+1,1). %C A237124 T(n,0) = A071724(n-1). %C A237124 T(n,1) = A220902(n), n>=2. %C A237124 T(n,2) = A228404(n-2), n>=4. %C A237124 T(n+3,3) = A033434(n). %C A237124 T(n,n) = 1. %C A237124 T(n+1,n) = n+1. %C A237124 T(n+2,n) = A034856(n+1). %H A237124 G. C. Greubel, <a href="/A237124/b237124.txt">Rows n = 0..30 of the triangle, flattened</a> %F A237124 From _Peter Bala_, Feb 18 2018: (Start) %F A237124 T(n,k) = C(2*n+1-k, n-k) - 2*C(2*n-k, n-k-1) - C(2*n-1-k, n-k-2) + 3*C(2*n-2-k, n-k-3) - 2*C(2*n-3-k, n-k-4), for n > 2, otherwise C(n, k). %F A237124 The n-th row polynomial of the row reverse triangle equals the n-th degree Taylor polynomial of the function (1 - x^2 + x^3)*(1 - 2*x)/(1 - x)^2 * 1/(1 - x)^n about 0. For example, for n = 4, (1 - x^2 + x^3)*(1 - 2*x)/(1 - x)^2 * 1/(1 - x)^4 = 1 + 4*x + 8*x^2 + 11*x^3 + 9*x^4 + O(x^5), giving (9, 11, 8, 4, 1) as row 4. (End) %e A237124 Triangle begins: %e A237124 1; %e A237124 1, 1; %e A237124 1, 2, 1; %e A237124 3, 4, 3, 1; %e A237124 9, 11, 8, 4, 1; %e A237124 28, 33, 24, 13, 5, 1; %e A237124 90, 104, 76, 43, 19, 6, 1; %e A237124 297, 339, 249, 145, 69, 26, 7, 1; %e A237124 1001, 1133, 836, 497, 248, 103, 34, 8, 1; %e A237124 3432, 3861, 2860, 1727, 891, 394, 146, 43, 9, 1; %e A237124 11934, 13364, 9932, 6071, 3211, 1484, 593, 199, 53, 10, 1; %e A237124 ... %t A237124 b[n_, k_]:= Binomial[2*n-k+1, n-k]; %t A237124 T[n_, k_]:= If[n<3, Binomial[n, k], b[n, k] -2*b[n, k+1] -b[n, k+2] +3*b[n, k+3] - 2*b[n, k+4]]; %t A237124 Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, May 08 2021 *) %o A237124 (Sage) %o A237124 def b(n,k): return binomial(2*n-k+1, n-k) %o A237124 def T(n,k): return binomial(n,k) if (n<3) else b(n,k) -2*b(n, k+1) -b(n, k+2) +3*b(n, k+3) -2*b(n, k+4) %o A237124 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 08 2021 %Y A237124 Cf. A000108. %K A237124 nonn,tabl,easy %O A237124 0,5 %A A237124 _Philippe Deléham_, Feb 03 2014