This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237128 #17 Jun 17 2017 03:09:44 %S A237128 36,324,396,684,756,1044,1116,1404,1476,1764,1836,2124,2196,2484,2556, %T A237128 2844,2916,3204,3276,3564,3636,3924,3996,4284,4356,4644,4716,5004, %U A237128 5076,5364,5436,5724,5796,6084,6156,6444,6516,6804,6876,7164,7236,7524,7596,7884 %N A237128 Angles n expressed in degrees such that 2*cos(n) = phi where phi is the golden ratio (A001622). %C A237128 a(n) == 36, 324 mod 360 and a(n)/36 is congruent to {1,9} mod 10 (A090771). %C A237128 See A019863 = half of the golden ratio (A001622) => a(1) = 90 - 54 degrees and a(2) = 360 - a(1) = 324 degrees. %C A237128 The squares in the sequence are 36, 324, 1764, 2916, 4356, 6084, 10404, 12996, 15876, 19044, 26244, 30276, 34596, 39204, 49284, 54756, 60516, 66564, 79524,... with the following properties: %C A237128 If a(n) == 36 mod 360 is a perfect square, sqrt(36+360*n)/6 = A090771 (numbers that are congruent to {1, 9} mod 10). %C A237128 If a(n) == 324 mod 360 is a perfect square, sqrt(324+360*n)/6 = A063226 (numbers that are congruent to {3, 7} mod 10). %H A237128 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A237128 a(n) = 18*(-5+3*(-1)^n+10*n). a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: 36*x*(x^2+8*x+1) / ((x-1)^2*(x+1)). - _Colin Barker_, Feb 04 2014 %e A237128 1476 is in the sequence because 2*cos(1476°) = 2*cos(1476*Pi/180) = 1.61803398... = phi. %p A237128 ***first program*** %p A237128 with(numtheory):err:=1/10^10:Digits:=20:for n from 1 to 20000 do:x:=evalf(2*cos(n*Pi/180)):ph:=evalf((1+sqrt(5)))/2:if abs(ph-x)<err then printf(`%d, `,n):else fi:od: %p A237128 ***second program*** %p A237128 lst:={}:for n from 0 to 30 do:x:=36+n*360:y:=324+n*360:lst:=lst union {x} union {y}:od:print(lst): %t A237128 Select[Range[8000],2*Cos[# Degree]==GoldenRatio&] (* or *) LinearRecurrence[ {1,1,-1},{36,324,396},50] (* _Harvey P. Dale_, Aug 14 2015 *) %o A237128 (PARI) Vec(36*x*(x^2+8*x+1)/((x-1)^2*(x+1)) + O(x^100)) \\ _Colin Barker_, Feb 04 2014 %Y A237128 Cf. A001622, A019863. %K A237128 nonn,easy %O A237128 1,1 %A A237128 _Michel Lagneau_, Feb 04 2014