cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237130 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that both {3*k - 1, 3*k + 1} and {phi(m) - 1, phi(m) + 1} are twin prime pairs, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 4, 3, 3, 1, 3, 4, 4, 3, 3, 5, 5, 3, 2, 2, 3, 4, 2, 3, 5, 5, 3, 4, 4, 5, 3, 5, 2, 3, 4, 4, 4, 2, 6, 4, 3, 4, 3, 5, 1, 5, 5, 5, 4, 2, 5, 4, 4, 2, 4, 6, 5, 6, 3, 5, 5, 6, 5, 1, 5, 3, 5, 3, 6, 4, 5, 7, 3, 5, 3, 5, 5, 3, 7, 3, 9, 4, 6, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 04 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 8.
(ii) Any integer n > 6 can be written as k + m with k > 0 and m > 0 such that both {prime(k), prime(k) + 2} and {phi(m) - 1, phi(m) + 1} are twin prime pairs.
(iii) Each n = 12, 13, ... can be written as p + q (q > 0) with p, p + 6, phi(q) - 1 and phi(q) + 1 all prime.
(iv) If n > 2 is neither 10 nor 430, then n can be written as k + m with k > 0 and m > 0 such that both {3k - 1, 3*k + 1} and {6*m - 1, 6*m + 1} are twin prime pairs.
Note that each part of the above conjecture implies the twin prime conjecture.

Examples

			a(7) = 1 since 7 = 2 + 5 with 3*2 - 1 = 5, 3*2 + 1 =7, phi(5) - 1 = 3 and phi(5) + 1 = 5 all prime.
a(140) = 1 since 140 = 104 + 36 with 3*104 - 1 = 311, 3*104 + 1 = 313, phi(36) - 1 = 11 and phi(36) + 1 = 13 all prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=PrimeQ[EulerPhi[n]-1]&&PrimeQ[EulerPhi[n]+1]
    a[n_]:=Sum[If[PrimeQ[3k-1]&&PrimeQ[3k+1]&&PQ[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]