cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237188 Smallest member of Sophie Germain pair, where each member of the prime pair is the smallest of its prime triple (p, p+2, p+8).

This page as a plain text file.
%I A237188 #27 Aug 07 2025 14:48:15
%S A237188 5,29,2549,6269,41609,259379,418349,492059,514049,521879,819029,
%T A237188 1171199,1659809,1994339,2014139,2325509,2327399,2392139,2420699,
%U A237188 2481179,2844269,3142829,3393359,3637169,3990029
%N A237188 Smallest member of Sophie Germain pair, where each member of the prime pair is the smallest of its prime triple (p, p+2, p+8).
%C A237188 It is not known if there are infinitely many Sophie Germain pairs with this property.
%C A237188 The sequence is infinite under Dickson's conjecture. Aside from a(1) = 5, all terms are 29 or 179 mod 210. - _Charles R Greathouse IV_, Feb 05 2014
%H A237188 Abhiram R Devesh and Charles R Greathouse IV, <a href="/A237188/b237188.txt">Table of n, a(n) for n = 1..10000</a> (first 135 terms from Devesh)
%H A237188 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SophieGermainPrime.html">Sophie Germain Prime</a>
%H A237188 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sophie_Germain_prime">Sophie Germain prime</a>
%e A237188 a(1): p = 5; (2*p)+1 = 11
%e A237188 Prime triples (5,7,13);(11,13,19)
%e A237188 a(2): p = 29; (2*p)+1=59
%e A237188 Prime triples (29,31,37);(59,61,67)
%t A237188 sgpQ[n_]:=Module[{sg=2n+1},AllTrue[Flatten[{sg+{0,2,8},n+{2,8}}], PrimeQ]]; Select[Prime[ Range[ 300000]],sgpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Feb 02 2016 *)
%o A237188 (Python)
%o A237188 from sympy import isprime
%o A237188 print([5] + [n for m in range(29, 10**8, 210) for n in (m, m+150) if isprime(n) and isprime(n+2) and isprime(n+8) and isprime(2*n+1) and isprime(2*n+3) and isprime(2*n+9)]) # _David Radcliffe_, Aug 07 2025
%o A237188 (PARI) is(n)=isprime(n) && isprime(n+2) && isprime(n+8) && isprime(2*n+1) && isprime(2*n+3) && isprime(2*n+9) \\ _Charles R Greathouse IV_, Feb 05 2014
%Y A237188 Cf. A005384.
%K A237188 nonn
%O A237188 1,1
%A A237188 _Abhiram R Devesh_, Feb 04 2014