This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237190 #20 Jun 25 2025 21:39:36 %S A237190 10830,25410,26040,88740,165900,196560,211050,224400,230280,247710, %T A237190 268500,268920,375480,377490,420330,451410,494340,512820,592620, %U A237190 604170,735750,751290,765780,799170,808080,952680,975660,1053690,1064190,1132860,1156170,1532370,1559580 %N A237190 Numbers k such that k+1, 2k+1, 3k+1, 4k+1, 5k+1 are five primes. %C A237190 A subsequence of A237189. %C A237190 All terms are divisible by 30, and b(n) = a(n)/30 begins: 361, 847, 868, 2958, 5530, 6552, 7035, 7480, 7676, 8257, 8950, 8964, 12516, 12583, 14011, ... %H A237190 Giovanni Resta, <a href="/A237190/b237190.txt">Table of n, a(n) for n = 1..1000</a> %t A237190 Select[30*Range[52000],AllTrue[#*Range[5]+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Dec 31 2017 *) %o A237190 (Python) %o A237190 from sympy import isprime %o A237190 for n in range(2000000): %o A237190 if isprime(n+1) and isprime(2*n+1) and isprime(3*n+1) and isprime(4*n+1) and isprime(5*n+1): %o A237190 print(n, end=', ') %Y A237190 Cf. A088250, A064238, A124410, A237189. %K A237190 nonn %O A237190 1,1 %A A237190 _Alex Ratushnyak_, Feb 04 2014