This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237202 #23 Jan 28 2025 10:47:37 %S A237202 1,1,25,100,100,25,1,1,200,5925,52800,182700,273504,182700,52800,5925, %T A237202 200,1,1,1275,167475,6021225,84646275,554083761,1858142825,3363309675, %U A237202 3363309675,1858142825,554083761,84646275 %N A237202 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(5*n+1,i) * binomial(k+5-i,5)^n, 0 <= k <= 5*(n-1). %C A237202 In general, define b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,5,n). %C A237202 Using these coefficients we can obtain formulas for binomial(n,e)^p and for Sum_{i=1..n} binomial(e-1+i,e)^p. %C A237202 In particular: %C A237202 binomial(n, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+k, e*p). %C A237202 Sum_{i=1..n} binomial(e-1+i, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+e+k, e*p+1). %C A237202 T(n,k) is the number of permutations of 5 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - _Andrew Howroyd_, May 08 2020 %H A237202 G. C. Greubel, <a href="/A237202/b237202.txt">Table of n, a(n) for the first 25 rows, flattened</a> %H A237202 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 12. %F A237202 Sum_{i=1..n} binomial(4+i,5)^p = Sum{k=0..5*(p-1)} T(p,k) * binomial(n+5+k, 5*p+1). %F A237202 binomial(n,5)^p = Sum_{k=0..5*(p-1)} T(p,k) * binomial(n+k, 5*p). %e A237202 T(n,0) = 1; %e A237202 T(n,1) = 6^n - (5*n+1); %e A237202 T(n,2) = 21^n - (5*n+1)*6^n + C(5*n+1,2); %e A237202 T(n,3) = 56^n - (5*n+1)*21^n + C(5*n+1,2)*6^n - C(5*n+1,3) ; %e A237202 T(n,4) = 126^n - (5*n+1)*56^n + C(5*n+1,2)*21^n - C(5*n+1,3)*6^n + C(5*n+1,4). %e A237202 Triangle T(n,k) begins: %e A237202 1; %e A237202 1, 25, 100, 100, 25, 1; %e A237202 1, 200, 5925, 52800, 182700, 273504, 182700, 52800, 5925, 200, 1; %e A237202 1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275, 6021225, 167475, 125, 1; %e A237202 1, 7750, 3882250, 447069750, 18746073375, 359033166276, 3575306548500, 20052364456500, 66640122159000, 135424590593500, 171219515211316, 135424590593500, 66640122159000, 20052364456500, 3575306548500, 359033166276, 18746073375, 447069750, 3882250, 7750, 1; %e A237202 ... %e A237202 Example: %e A237202 Sum_{i=1..n} C(4+i,5)^3 = C(n+5,16) + 200*C(n+6,16) + 5925*(n+7,16) + 52800*C(n+8,16) + 182700*C(n+9,16) + 273504*C(n+10,16) + 182700*C(n+11,16) + 52800*C(n+12,16) + 5925*C(n+13,16) + 200*C(n+14,16) + C(n+15,16). %e A237202 C(n,5)^3 = C(n,15) + 200*C(n+1,15) + 5925*C(n+2,15) + 52800*C(n+3,15) + 182700*C(n+4,15) + 273504*C(n+5,15) + 182700*C(n+6,15) + 52800*C(n+7,15) + 5925*C(n+8,15) + 200*C(n+9,15) + C(n+10,15). %t A237202 b[k_, 5, p_] := Sum[(-1)^i*Binomial[5*p+1, i]*Binomial[k-i, 5]^p /. k -> 5+i, {i, 0, k-5}]; row[p_] := Table[b[k, 5, p], {k, 5, 5*p}]; Table[row[p], {p, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 05 2014 *) %o A237202 (PARI) T(n,k)={sum(i=0, k, (-1)^i*binomial(5*n+1, i)*binomial(k+5-i, 5)^n)} \\ _Andrew Howroyd_, May 08 2020 %Y A237202 Columns k=2..5 are A151647, A151648, A151649, A151650. %Y A237202 Row sums are A014609. %Y A237202 Similar triangles for e=1..6: A173018 (or A008292), A154283, A174266, A236463, this sequence, A237252. %Y A237202 Sum_{i=1..n} binomial(4+i,5)^p for p=2..3 gives: A086025, A086026. %Y A237202 Cf. A087127, A087107, A087108, A087109, A087110, A087111, A181544. %K A237202 nonn,tabf %O A237202 1,3 %A A237202 _Yahia Kahloune_, Feb 05 2014 %E A237202 Edited by _Andrew Howroyd_, May 08 2020