cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237253 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that phi(k) - 1, phi(k) + 1 and prime(prime(prime(m))) - 2 are all prime, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 3, 4, 2, 2, 1, 2, 3, 3, 3, 2, 4, 5, 4, 3, 4, 3, 5, 4, 4, 6, 6, 7, 5, 5, 6, 3, 4, 3, 6, 5, 6, 5, 3, 6, 5, 6, 3, 3, 5, 3, 5, 4, 3, 4, 3, 6, 4, 3, 1, 1, 4, 3, 4, 4, 4, 5, 6, 7, 3, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 05 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 7.
(ii) Any integer n > 22 can be written as k + m with k > 0 and m > 0 such that prime(k) + 2 and prime(prime(prime(m))) - 2 are both prime.
Note that either part of the conjecture implies the twin prime conjecture.

Examples

			 a(12) = 1 since 12 = 9 + 3 with phi(9) - 1 = 5, phi(9) + 1 = 7 and prime(prime(prime(3))) - 2 = prime(prime(5)) - 2 = prime(11) - 2 = 29 all prime.
a(103) = 1 since 103 = 73 + 30 with phi(73) - 1 = 71, phi(73) + 1 = 73 and prime(prime(prime(30))) - 2 = prime(prime(113)) - 2 = prime(617) - 2 = 4547 all prime.
		

Crossrefs

Programs

  • Mathematica
    pq[n_]:=PrimeQ[EulerPhi[n]-1]&&PrimeQ[EulerPhi[n]+1]
    PQ[n_]:=PrimeQ[Prime[Prime[Prime[n]]]-2]
    a[n_]:=Sum[If[pq[k]&&PQ[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]