A237253 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that phi(k) - 1, phi(k) + 1 and prime(prime(prime(m))) - 2 are all prime, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 3, 4, 2, 2, 1, 2, 3, 3, 3, 2, 4, 5, 4, 3, 4, 3, 5, 4, 4, 6, 6, 7, 5, 5, 6, 3, 4, 3, 6, 5, 6, 5, 3, 6, 5, 6, 3, 3, 5, 3, 5, 4, 3, 4, 3, 6, 4, 3, 1, 1, 4, 3, 4, 4, 4, 5, 6, 7, 3, 3
Offset: 1
Keywords
Examples
a(12) = 1 since 12 = 9 + 3 with phi(9) - 1 = 5, phi(9) + 1 = 7 and prime(prime(prime(3))) - 2 = prime(prime(5)) - 2 = prime(11) - 2 = 29 all prime. a(103) = 1 since 103 = 73 + 30 with phi(73) - 1 = 71, phi(73) + 1 = 73 and prime(prime(prime(30))) - 2 = prime(prime(113)) - 2 = prime(617) - 2 = 4547 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
pq[n_]:=PrimeQ[EulerPhi[n]-1]&&PrimeQ[EulerPhi[n]+1] PQ[n_]:=PrimeQ[Prime[Prime[Prime[n]]]-2] a[n_]:=Sum[If[pq[k]&&PQ[n-k],1,0],{k,1,n-1}] Table[a[n],{n,1,80}]
Comments