cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237256 Smallest member of Sophie Germain pair, wherein each member of the prime pair is the smallest of its prime quadruplets (p, p+2, p+8, p+12).

This page as a plain text file.
%I A237256 #40 May 11 2025 14:41:40
%S A237256 5,29,41609,4287599,16254449,87130709,118916729,157119089,173797289,
%T A237256 180210059,207959879,309740999,349066439,356259989,401519399,
%U A237256 473953229,705480749,912950249,994719629
%N A237256 Smallest member of Sophie Germain pair, wherein each member of the prime pair is the smallest of its prime quadruplets (p, p+2, p+8, p+12).
%C A237256 It is not known if there are infinitely many Sophie Germain pairs with this property.
%H A237256 Abhiram R Devesh and Dana Jacobsen, <a href="/A237256/b237256.txt">Table of n, a(n) for n = 1..1155</a> [first 155 terms from Abhiram R Devesh]
%H A237256 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SophieGermainPrime.html">Sophie Germain Prime</a>
%H A237256 Wikipedia, <a href="http://en.wikipedia.org/wiki/Sophie_Germain_prime">Sophie Germain Prime</a>
%e A237256 a(1): p = 5; (2*p)+1 = 11; prime quadruplets (5,7,13,17); (11,13,19,23).
%e A237256 a(2): p = 29; (2*p)+1 = 59; prime quadruplets (29,31,37,41); (59,61,67,71).
%o A237256 (Python)
%o A237256 from sympy import isprime, primerange
%o A237256 def is_a237256(p): return all(isprime(q) for q in (p, p+2, p+8, p+12, 2*p+1, 2*p+3, 2*p+9, 2*p+13))
%o A237256 print(*[ p for p in primerange(10**8) if is_a237256(p)], sep=', ')
%o A237256 # _David Radcliffe_, May 11 2025
%o A237256 (PARI) forprime(p=1, 1e9, my(t=2*p+1); if(isprime(t) && isprime(p+2) && isprime(p+8) && isprime(p+12) && isprime(t+2) && isprime(t+8) && isprime(t+12), print1(p, ", "))) \\ _Felix Fröhlich_, Jul 26 2014
%o A237256 (Perl) use ntheory ":all"; my @p = sieve_prime_cluster(1,2e9,2,8,12); my %h; undef @h{@p}; for (@p) { say if exists $h{2*$_+1} } # _Dana Jacobsen_, Oct 03 2015
%Y A237256 Cf. A005384, A233540.
%K A237256 nonn
%O A237256 1,1
%A A237256 _Abhiram R Devesh_, Feb 05 2014