This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237258 #28 Oct 27 2022 18:02:48 %S A237258 1,0,0,1,1,3,4,7,9,16,21,32,43,63,84,122,158,220,293,393,511,685,881, %T A237258 1156,1485,1925,2445,3147,3952,5019,6323,7924,9862,12336,15259,18900, %U A237258 23294,28646,35091,42985,52341,63694,77336,93588,112973,136367,163874,196638 %N A237258 Number of strict partitions of 2n that include a partition of n. %C A237258 A strict partition is a partition into distinct parts. %H A237258 Fausto A. C. Cariboni, <a href="/A237258/b237258.txt">Table of n, a(n) for n = 0..200</a> %F A237258 a(n) = A237194(2n,n). %e A237258 a(5) counts these partitions of 10: [5,4,1], [5,3,2], [4,3,2,1]. %t A237258 z = 24; Table[theTotals = Map[{#, Map[Total, Subsets[#]]} &, Select[IntegerPartitions[2 nn], # == DeleteDuplicates[#] &]]; Length[Map[#[[1]] &, Select[theTotals, Length[Position[#[[2]], nn]] >= 1 &]]], {nn, z}] (* _Peter J. C. Moses_, Feb 04 2014 *) %Y A237258 Cf. A000009, A237194, A235130. %Y A237258 The non-strict version is A002219, ranked by A357976. %Y A237258 These partitions are ranked by A357854. %Y A237258 A000712 counts distinct submultisets of partitions, strict A032302. %Y A237258 A304792 counts subset-sums of partitions, positive A276024, strict A284640. %Y A237258 Cf. A006827, A064914, A108917, A276107, A300061, A357879. %K A237258 nonn %O A237258 0,6 %A A237258 _Clark Kimberling_, Feb 05 2014 %E A237258 a(31)-a(47) from _Alois P. Heinz_, Feb 07 2014