A237266 The n-th base 2 pseudoprime is also a pseudoprime to base 2 through base prime(a(n)).
1, 1, 1, 2, 1, 3, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 1, 5, 1, 1, 3, 1
Offset: 1
Keywords
Examples
n=1, A001567[1]=341. 341 is base 2 pseudoprime but not base 3 pesudoprime. Since Prime(1)=2, a(1)=1; ... n=6, A001567[1]=1729. 1729 is base 2, 3, 5 pseudoprimes but not base 7 pesudoprime. Since Prime(3)=5, a(6)=5.
Links
- Lei Zhou, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p = 1; fi = {}; While[Length[fi] < 87, p = p + 2; If[! PrimeQ[p], ct = 0; q = 2; While[c = q^(p - 1); Mod[c, p] == 1, q = NextPrime[q]]; If[q > 2, q = PrimePi[NextPrime[q, -1]]; AppendTo[fi, q]]]]; Print[fi]
Comments