cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A237044 Number of overcompositions of n minus the number of partitions of n.

Original entry on oeis.org

0, 1, 2, 9, 21, 53, 133, 309, 706, 1572, 3534, 7752, 16991, 36807, 79385, 170528, 364563, 776739, 1649071, 3490698, 7366917, 15512544, 32583646, 68306009, 142902505, 298446956, 622232624, 1295316994, 2692580198, 5589582431, 11588900240, 23999045850
Offset: 0

Views

Author

Omar E. Pol, Feb 02 2014

Keywords

Crossrefs

Formula

a(n) = A236002(n) - A000041(n).

A237045 Number of overcompositions of n minus the number of overpartitions of n.

Original entry on oeis.org

0, 0, 0, 4, 12, 36, 104, 260, 628, 1448, 3344, 7464, 16564, 36180, 78480, 169232, 362732, 774172, 1645508, 3485788, 7360208, 15503432, 32571360, 68289536, 142880552, 298417848, 622194236, 1295266596, 2692514348, 5589496748, 11588789220, 23998902548
Offset: 0

Views

Author

Omar E. Pol, Feb 02 2014

Keywords

Comments

Number of overcompositions of n that contain at least two parts in increasing order.

Examples

			Illustration of a(4) = -6 with both overcompositions and overpartitions in colexicographic order.
--------------------------------------------------------
.    Overcompositions of 4      Overpartitions of 4
--------------------------------------------------------
.    _ _ _ _                    _ _ _ _
1   |.| | | |  1', 1,  1,  1   |.| | | |  1', 1,  1,  1
2   |_| | | |  1,  1,  1,  1   |_| | | |  1,  1,  1,  1
3   |  .|.| |  2', 1', 1       |  .|.| |  2', 1', 1
4   |   |.| |  2,  1', 1       |   |.| |  2,  1', 1
5   |  .| | |  2', 1,  1       |  .| | |  2', 1,  1
6   |_ _| | |  2,  1,  1       |_ _| | |  2,  1,  1
7  *|.|  .| |  1', 2', 1       |    .|.|  3', 1
8  *| |  .| |  1,  2', 1       |     |.|  3,  1
9  *|.|   | |  1', 2,  1       |    .| |  3', 1
10 *|_|   | |  1,  2,  1       |_ _ _| |  3,  1
11  |    .|.|  3', 1'          |  .|   |  2', 2
12  |     |.|  3,  1'          |_ _|   |  2,  2
13  |    .| |  3', 1           |      .|  4'
14  |_ _ _| |  3,  1           |_ _ _ _|  4
15 *|.| |  .|  1', 1,  2'
16 *| | |  .|  1,  1,  2'
17 *|.| |   |  1', 1,  2
18 *|_| |   |  1,  1,  2
19  |  .|   |  2', 2
20  |_ _|   |  2,  2
21 *|.|    .|  1', 3'
22 *| |    .|  1,  3'
23 *|.|     |  1', 3
24 *|_|     |  1,  3
25  |      .|  4'
26  |_ _ _ _|  4
.
There are 26 overcompositions of 4 and there are 14 overpartitions of 4, so the difference is a(4) = 26 - 14 = 12.
On the other hand there are 12 overcompositions of 4 that contain at least two parts in increasing order, so a(4) = 12.
		

Crossrefs

Formula

a(n) = A236002(n) - A015128(n).
Showing 1-2 of 2 results.