A237284 Number of ordered ways to write 2*n = p + q with p, q and A000720(p) all prime.
0, 0, 1, 2, 2, 1, 2, 3, 2, 2, 4, 3, 1, 3, 2, 1, 5, 3, 1, 3, 3, 3, 4, 5, 2, 3, 4, 1, 4, 3, 3, 6, 2, 1, 6, 6, 3, 4, 7, 1, 4, 6, 3, 5, 6, 2, 4, 4, 2, 6, 5, 3, 5, 4, 3, 7, 8, 2, 4, 8, 1, 4, 5, 3, 6, 5, 4, 2, 7, 5, 6, 6, 3, 4, 6, 2, 5, 7, 2, 4
Offset: 1
Keywords
Examples
a(13) = 1 since 2*13 = 3 + 23 with 3, 23 and A000720(3) = 2 all prime. a(278) = 1 since 2*278 = 509 + 47 with 509, 47 and A000720(509) = 97 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Carlos Rivera, Conjecture 85. Conjectures stricter that the Goldbach ones, Prime Puzzles
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016.
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[2n-Prime[Prime[k]]],1,0],{k,1,PrimePi[PrimePi[2n-1]]}] Table[a[n],{n,1,80}]
Comments