This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237291 #8 Apr 06 2014 22:15:10 %S A237291 0,0,0,0,1,1,1,1,1,1,1,1,2,2,0,1,2,0,2,3,1,0,2,2,1,3,2,1,1,1,1,2,3,2, %T A237291 2,0,3,4,2,2,3,2,1,3,4,1,5,2,1,2,3,4,3,1,1,3,2,2,4,3,2,3,3,1,5,5,1,3, %U A237291 4,2,3,4,4,2,4,2,3,4,2,2 %N A237291 Number of ways to write 2*n - 1 = p + q + r (p <= q <= r) with p, q, r, pi(p), pi(q), pi(r) all prime, where pi(x) denotes the number of primes not exceeding x (A000720). %C A237291 Conjecture: a(n) > 0 for all n > 36. %C A237291 This is stronger than Goldbach's weak conjecture finally proved by H. A. Helfgott in 2013. %H A237291 Zhi-Wei Sun, <a href="/A237291/b237291.txt">Table of n, a(n) for n = 1..5000</a> %H A237291 H. A. Helfgott, <a href="http://arxiv.org/abs/1205.5252">Minor arcs for Goldbach's problem</a>, arXiv:1205.5252, 2012. %H A237291 H. A. Helfgott, <a href="http://arxiv.org/abs/1305.2897">Major arcs for Goldbach's theorem</a>, arXiv:1305.2897, 2013. %H A237291 Z.-W. Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641, 2014 %e A237291 a(16) = 1 since 2*16 - 1 = 3 + 11 + 17 with 3, 11, 17, pi(3) = 2, pi(11) = 5 and pi(17) = 7 all prime. %e A237291 a(179) = 1 since 2*179 - 1 = 83 + 83 + 191 with 83, 191, pi(83) = 23 and pi(191) = 43 all prime. %t A237291 p[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]] %t A237291 a[n_]:=Sum[If[p[2n-1-Prime[Prime[i]]-Prime[Prime[j]]],1,0],{i,1,PrimePi[PrimePi[(2n-1)/3]]},{j,i,PrimePi[PrimePi[(2n-1-Prime[Prime[i]])/2]]}] %t A237291 Table[a[n],{n,1,80}] %Y A237291 Cf. A000040, A000720, A006450, A068307, A230219, A236832, A237284. %K A237291 nonn %O A237291 1,13 %A A237291 _Zhi-Wei Sun_, Feb 06 2014