cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237332 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the upper median plus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one.

This page as a plain text file.
%I A237332 #6 Jul 23 2025 10:05:49
%S A237332 81,320,320,1264,1660,1264,5120,8588,8588,5120,20692,45996,58296,
%T A237332 45996,20692,82800,242644,414268,414268,242644,82800,332192,1279474,
%U A237332 2870224,3988852,2870224,1279474,332192,1346016,6740992,19874388,36921568
%N A237332 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the upper median plus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one.
%C A237332 Table starts
%C A237332 .......81........320........1264..........5120...........20692...........82800
%C A237332 ......320.......1660........8588.........45996..........242644.........1279474
%C A237332 .....1264.......8588.......58296........414268.........2870224........19874388
%C A237332 .....5120......45996......414268.......3988852........36921568.......342809906
%C A237332 ....20692.....242644.....2870224......36921568.......449909120......5467718444
%C A237332 ....82800....1279474....19874388.....342809906......5467718444.....88161950500
%C A237332 ...332192....6740992...137663582....3194951224.....67160833084...1426506722524
%C A237332 ..1346016...36117846...978134492...31126440590....873971263352..24924114752042
%C A237332 ..5439936..190631336..6780688008..290583883424..10725570823166.399514227564720
%C A237332 .21769152.1005363146.46959680920.2718308070358.130884937973764
%H A237332 R. H. Hardin, <a href="/A237332/b237332.txt">Table of n, a(n) for n = 1..112</a>
%F A237332 Empirical for column k:
%F A237332 k=1: a(n) = 288*a(n-4) -6720*a(n-8) +33536*a(n-12) for n>15
%F A237332 k=2: [order 32] for n>34
%e A237332 Some solutions for n=3 k=4
%e A237332 ..0..1..0..2..2....0..2..1..0..2....0..0..1..2..2....0..1..0..1..1
%e A237332 ..0..1..1..1..2....2..1..2..0..2....2..1..2..2..2....1..0..2..1..0
%e A237332 ..0..2..2..1..0....1..0..0..2..1....1..0..2..2..1....0..0..0..0..1
%e A237332 ..2..0..1..2..2....0..2..2..1..2....2..2..2..1..0....1..1..2..0..0
%K A237332 nonn,tabl
%O A237332 1,1
%A A237332 _R. H. Hardin_, Feb 06 2014