cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237348 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that prime(k) + 4 and prime(prime(m)) + 4 are both prime.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 1, 2, 3, 1, 2, 2, 1, 2, 3, 3, 3, 5, 4, 2, 4, 1, 5, 1, 5, 1, 4, 4, 3, 3, 3, 1, 5, 4, 4, 3, 5, 3, 5, 6, 3, 3, 4, 3, 4, 5, 1, 5, 3, 3, 3, 5, 4, 2, 8, 1, 2, 5, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 06 2014

Keywords

Comments

Conjecture: For each d = 1, 2, 3, ... there is a positive integer N(d) for which any integer n > N(d) can be written as k + m with k > 0 and m > 0 such that prime(k) + 2*d and prime(prime(m)) + 2*d are both prime. In particular, we may take (N(1), N(2), ..., N(10)) = (2, 11, 4, 15, 31, 4, 2, 77, 4, 7).
This extension of the "Super Twin Prime Conjecture" (posed by the author) implies de Polignac's well-known conjecture that any positive even number can be a difference of two primes infinitely often.

Examples

			a(7) = 1 since 7 = 6 + 1 with prime(6) + 4 = 13 + 4 = 17 and prime(prime(1)) + 4 = prime(2) + 4 = 7 both prime.
a(114) = 1 since 114 = 78 + 36 with prime(78) + 4 = 397 + 4 = 401 and prime(prime(36)) + 4 = prime(151) + 4 = 877 + 4 = 881 both prime.
		

Crossrefs

Programs

  • Mathematica
    pq[n_]:=pq[n]=PrimeQ[Prime[n]+4]
    PQ[n_]:=PrimeQ[Prime[Prime[n]]+4]
    a[n_]:=Sum[If[pq[k]&&PQ[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]