This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237349 #16 Dec 15 2016 08:45:00 %S A237349 1,3,5,11,13,29,31,55,61,77,79,367,369,385,401,521,523,811,813,1101, %T A237349 1117,1133,1135,10351,10357,10373,10397,10685,10687,14783,14785,15505, %U A237349 15521,15537,15553,62209,62211,62227,62243,71459,71461,75557,75559,75847,76135 %N A237349 a(n) = Sum_{i=1..n} ( Product_{k|i} d(k) ), where d(n) = A000005(n). %C A237349 Sum of all the products formed by multiplying together the number of divisors of each divisor of the numbers from 1 to n. %C A237349 Partial sums of A211776. [_Joerg Arndt_, Feb 11 2014] %F A237349 a(n) = Sum_{i=1..n} ( Product_{k|i} A000005(k) ). %e A237349 a(3) = 5. Sum_{i=1..3} ( Product_{k|i} d(k) ) = %e A237349 ( Product_{k|1} d(k) ) + ( Product_{k|2} d(k) ) + ( Product_{k|3} d(k) ) = ( d(1) ) + ( d(1) * d(2) ) + ( d(1) * d(3) ) = 1 + (1)(2) + (1)(2) = 5. %p A237349 with(numtheory); A237349:=n->add(mul(tau(k)^(1-ceil(i/k)+floor(i/k)), k=1..i), i=1..n); seq(A237349(n), n=1..50); %t A237349 Table[Sum[Product[DivisorSigma[0, k]^(1-Ceiling[i/k]+Floor[i/k]), {k, i}], {i, n}], {n, 50}] %Y A237349 Cf. A000005, A211776. %K A237349 nonn,easy %O A237349 1,2 %A A237349 _Wesley Ivan Hurt_, Feb 06 2014